分析 首先根据已知条件看能得到哪些等量条件,然后根据得出的条件来判断各结论是否正确.
解答 解:∵△ABC、△DCE都是等腰Rt△,
∴AB=AC=$\frac{\sqrt{2}}{2}$BC=$\sqrt{2}$,CD=DE=$\frac{\sqrt{2}}{2}$CE;
∠B=∠ACB=∠DEC=∠DCE=45°;
①∵∠B=∠DEC=45°,
∴180°-∠BEC-45°=180°-∠BEC-45°;
即∠AEC=∠BCE;故①正确;
③∵$\frac{CD}{EC}=\frac{AC}{BC}$,
∴$\frac{CD}{AC}=\frac{CE}{BC}$,
由①知∠ECB=∠DCA,
∴△BEC∽△ADC;
∴∠DAC=∠B=45°;
∴∠DAC=∠BCA=45°,
即AD∥BC,故③正确;
②由③知:∠DAC=45°,则∠EAD=135°;
∠BEC=∠EAC+∠ECA=90°+∠ECA;
∵∠ECA<45°,
∴∠BEC<135°,
即∠BEC<∠EAD;
因此△EAD与△BEC不相似,故②错误;
④△ABC的面积为定值,若梯形ABCD的面积最大,则△ACD的面积最大;
△ACD中,AD边上的高为定值(即为1),若△ACD的面积最大,则AD的长最大;
由④的△BEC∽△ADC知:当AD最长时,BE也最长;
故梯形ABCD面积最大时,E、A重合,此时EC=AC=$\sqrt{2}$,AD=1;
故S梯形ABCD=$\frac{1}{2}$(1+2)×1=$\frac{3}{2}$,故④正确;
故答案为:①③④.
点评 本题考查了相似三角形的判定与性质,等腰直角三角形的性质,平行线的判定,熟练掌握相似三角形的判定与性质是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com