8£®Èçͼ1£¬ÒÑÖªÅ×ÎïÏßy=ax2-2ax+c£¨a¡Ù0£©ÓëxÖá½»ÓÚA£¬B£¬ÓëyÖá½»ÓÚµãE£¬µãCΪÅ×ÎïÏߵĶ¥µã£¬ÒÑÖªB£¨3£¬0£©£¬EO=BO£¬Á¬½ÓEB£®
£¨1£©ÇóÅ×ÎïÏß½âÎöʽºÍÖ±ÏßEBµÄ½âÎöʽ£®
£¨2£©ÉèµãFΪÅ×ÎïÏßÔÚÖ±ÏßEBÏ·½²¿·ÖÉϵÄÒ»¶¯µã£¬Ç󵱡÷EFBÃæ»ý×î´óʱ£¬µãFµÄ×ø±ê£¬²¢Çó³ö´Ëʱ¡÷EFBµÄÃæ»ý£®
£¨3£©Èçͼ2£¬¹ýµãE×÷Ö±ÏßEG¡ÎxÖá½»Å×ÎïÏßÓÚµãG£¬Á¬½ÓAG£¬AC£¬ÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹¡ÏBAP=¡ÏGAC£¿Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Ö»ÐèÏÈÇó³öµãEµÄ×ø±ê£¬È»ºóÔËÓôý¶¨ÏµÊý·¨¾Í¿É½â¾öÎÊÌ⣻
£¨2£©¹ýµãF×÷PN¡ÍxÖáÓÚN£¬½»EBÓÚM£¬Èçͼ1£¬ÉèµãFµÄºá×ø±êΪm£¬¾Í¿ÉÓú¬mµÄ´úÊýʽ±íʾ³öFMµÄ³¤£¬½ø¶ø±íʾ³ö¡÷EFBµÄÃæ»ý£¬È»ºóÔËÓöþ´Îº¯ÊýµÄ×îÖµÐԾͿɽâ¾öÎÊÌ⣻
£¨3£©¿ÉÏÈÇó³öµãC¡¢GµÄ×ø±ê£¬È»ºóÇó³öAG¡¢GC¡¢AC£¬¸ù¾Ý¹´¹É¶¨ÀíµÄÄ涨Àí¿ÉµÃµ½¡ÏAGC=90¡ã£¬È»ºóÔËÓÃÈý½Çº¯ÊýµÄ¶¨ÒåÇó³ötan¡ÏGAC£¬ÓÉ¡ÏBAP=¡ÏGAC¿ÉµÃµ½tan¡ÏBAP£®ÉèÖ±ÏßAPÓëyÖáµÄ½»µãΪQ£¬ÔÚRt¡÷AOQÖÐÔËÓÃÈý½Çº¯Êý¿ÉÇó³öOQ£¬´Ó¶øµÃµ½µãQµÄ×ø±ê£¬½ø¶øÇó³öÖ±ÏßOQµÄ½âÎöʽ£¬È»ºóͨ¹ý½â·½³Ì×飬¾Í¿ÉÇó³öµãPµÄ×ø±ê£®

½â´ð ½â£º£¨1£©¡ßB£¨3£¬0£©£¬EO=BO£¬
¡àEO=BO=3£¬E£¨0£¬-3£©£®
¡ßµãB¡¢EÔÚÅ×ÎïÏßy=ax2-2ax+cÉÏ£¬
¡à$\left\{\begin{array}{l}{9a-6a+c=0}\\{c=-3}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=1}\\{c=-3}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=x2-2x-3£®
ÉèÖ±ÏßEBµÄ½âÎöʽΪy=kx+b£¬
ÔòÓÐ$\left\{\begin{array}{l}{3k+b=0}\\{b=-3}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=1}\\{b=-3}\end{array}\right.$£¬
¡àÖ±ÏßEBµÄ½âÎöʽΪy=x-3£»

£¨2£©¹ýµãF×÷PN¡ÍxÖáÓÚN£¬½»EBÓÚM£¬Èçͼ1£¬

ÉèµãFµÄºá×ø±êΪm£¬ÔòÓÐ
yF=m2-2m-3£¬yM=m-3£¬
¡àMF=£¨m-3£©-£¨m2-2m-3£©=-m2+3m£¬
¡àS¡÷EFB=S¡÷EFM+S¡÷BFM
=$\frac{1}{2}$MF•ON+$\frac{1}{2}$MF•BN
=$\frac{1}{2}$OB•MF
=$\frac{1}{2}$¡Á3¡Á£¨-m2+3m£©
=-$\frac{3}{2}$£¨m-$\frac{3}{2}$£©2+$\frac{27}{8}$£®
¡ß-$\frac{3}{2}$£¼0£¬
¡àµ±m=$\frac{3}{2}$ʱ£¬S¡÷EFBÈ¡µ½×î´óÖµ£¬×î´óֵΪ$\frac{27}{8}$£¬
´ËʱyP=£¨$\frac{3}{2}$£©2-2¡Á$\frac{3}{2}$-3=-$\frac{15}{4}$£¬
ÔòµãPµÄ×ø±êΪ£¨$\frac{3}{2}$£¬-$\frac{15}{4}$£©£»

£¨3£©Á¬½ÓGC£¬
ÓÉy=x2-2x-3=£¨x-1£©2-4£¬
¿ÉµÃ¶¥µãC£¨1£¬-4£©£¬¶Ô³ÆÖáΪx=1£®
µ±y=0ʱ£¬x2-2x-3=0£¬
½âµÃx1=-1£¬x2=3£¬
¡àµãAµÄ×ø±êΪ£¨-1£¬0£©£®
ÓÉEG¡ÎxÖᣬE£¨0£¬-3£©£¬
¿ÉµÃE¡¢G¹ØÓÚ¶Ô³ÆÖáx=1¶Ô³Æ£¬
ÔòÓÐG£¨2£¬-3£©£®
¸ù¾ÝÁ½µãÖ®¼äµÄ¾àÀ빫ʽ¿ÉµÃ
AG=$\sqrt{£¨2+1£©^{2}+£¨-3-0£©^{2}}$=3$\sqrt{2}$£¬
AC=$\sqrt{£¨1+1£©^{2}+£¨-4-0£©^{2}}$=2$\sqrt{5}$£¬
GC=$\sqrt{£¨1-2£©^{2}+£¨-4+3£©^{2}}$=$\sqrt{2}$£¬
¡àAG2+GC2=AC2£¬
¡à¡ÏAGC=90¡ã£¬
¡àtan¡ÏGAC=$\frac{GC}{AG}$=$\frac{\sqrt{2}}{3\sqrt{2}}$=$\frac{1}{3}$£®
¡ß¡ÏBAP=¡ÏGAC£¬
¡àtan¡ÏBAP=$\frac{1}{3}$£®
ÉèÖ±ÏßAPÓëyÖá½»ÓÚµãQ£¬
ÔÚRt¡÷AOQÖУ¬tan¡ÏBAP=$\frac{OQ}{OA}$=$\frac{OQ}{1}$=$\frac{1}{3}$£¬
¡àOQ=$\frac{1}{3}$£¬
¡àµãQµÄ×ø±êΪ£¨0£¬$\frac{1}{3}$£©»ò£¨0£¬-$\frac{1}{3}$£©£®
¢Ùµ±µãQµÄ×ø±êΪ£¨0£¬$\frac{1}{3}$£©Ê±£¬Èçͼ2¢Ù£¬

ÓÉA£¨-1£¬0£©¡¢Q£¨0£¬$\frac{1}{3}$£©¿ÉµÃÖ±ÏßAPµÄ½âÎöʽΪy=$\frac{1}{3}$x+$\frac{1}{3}$£¬
½â·½³Ì×é$\left\{\begin{array}{l}{y=\frac{1}{3}x+\frac{1}{3}}\\{y={x}^{2}-2x-3}\end{array}\right.$£¬µÃ
$\left\{\begin{array}{l}{{x}_{1}=-1}\\{{y}_{1}=0}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=\frac{10}{3}}\\{{y}_{2}=\frac{13}{9}}\end{array}\right.$£¬
¡àµãPµÄ×ø±êΪ£¨$\frac{10}{3}$£¬$\frac{13}{9}$£©£®
¢Úµ±µãQµÄ×ø±êΪ£¨0£¬-$\frac{1}{3}$£©Ê±£¬Èçͼ2¢Ú£¬

ÓÉA£¨-1£¬0£©¡¢Q£¨0£¬-$\frac{1}{3}$£©¿ÉµÃÖ±ÏßAPµÄ½âÎöʽΪy=-$\frac{1}{3}$x-$\frac{1}{3}$£¬
½â·½³Ì×é$\left\{\begin{array}{l}{y=-\frac{1}{3}x-\frac{1}{3}}\\{y={x}^{2}-2x-3}\end{array}\right.$£¬µÃ
$\left\{\begin{array}{l}{{x}_{1}=-1}\\{{y}_{1}=0}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=\frac{8}{3}}\\{{y}_{2}=-\frac{11}{9}}\end{array}\right.$
¡àµãPµÄ×ø±êΪ£¨$\frac{8}{3}$£¬-$\frac{11}{9}$£©£®
×ÛÉÏËùÊö£ºµãPµÄ×ø±êΪ£¨$\frac{10}{3}$£¬$\frac{13}{9}$£©»ò£¨$\frac{8}{3}$£¬-$\frac{11}{9}$£©£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯ÊýµÄÖá¶Ô³ÆÐÔ¡¢×îÖµÐÔ¡¢ÔËÓôý¶¨ÏµÊý·¨ÇóÅ×ÎïÏß¼°Ö±ÏߵĽâÎöʽ¡¢Èý½Çº¯ÊýµÄ¶¨Òå¡¢¹´¹É¶¨ÀíµÄÄ涨Àí¡¢½âÒ»Ôª¶þ´Î·½³Ì¡¢ÇóÖ±ÏßÓëÅ×ÎïÏߵĽ»µã¡¢Á½µãÖ®¼äµÄ¾àÀ빫ʽµÈ֪ʶ£¬×ÛºÏÐԱȽÏÇ¿£»ÔÚ½â¾öÎÊÌâµÄ¹ý³ÌÖУ¬Óõ½ÁË·ÖÀàÌÖÂÛ¡¢´ý¶¨ÏµÊý·¨¡¢Åä·½·¨¡¢¸î²¹·¨µÈÖØÒªµÄÊýѧ˼Ïë·½·¨£¬Ó¦ÊìÁ·ÕÆÎÕ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èô½«·Öʽ$\frac{a+b}{ab}$ÖеÄaÓëbµÄÖµ¶¼À©´óΪԭÀ´µÄ10±¶£¬ÔòÕâ¸ö·ÖʽµÄÖµ½«£¨¡¡¡¡£©
A£®À©´óΪԭÀ´µÄ10±¶B£®·ÖʽµÄÖµ²»±ä
C£®ËõСΪԭÀ´µÄ$\frac{1}{10}$D£®ËõСΪԭÀ´µÄ$\frac{1}{100}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒªµÃµ½Ò»´Îº¯Êýy=3£¨x-2£©µÄͼÏ󣬱ØÐ뽫һ´Îº¯Êýy=3xµÄͼÏ󣨡¡¡¡£©
A£®Ïò×óƽÒÆ2¸öµ¥Î»B£®ÏòÓÒƽÒÆ2¸öµ¥Î»C£®Ïò×óƽÒÆ6¸öµ¥Î»D£®ÏòÓÒƽÒÆ6¸öµ¥Î»

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÊÔÈ·¶¨22014•32015µÄ¸öλÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Å×ÎïÏßy=ax2+bx+c½»xÖáÓÚµãA¡¢B£¬½»yÖáÓÚµãM£¬OA=3£¬tan¡ÏAMO=$\frac{3}{4}$£¬OM=OB£®
£¨1£©ÇóÅ×ÎïÏߵıí´ïʽ£»
£¨2£©ÔÚµÚÈýÏóÏÞÄÚ£¬µãP£¨m£¬n£©£¨m£¼0£¬n£¼0£©ÔÚÅ×ÎïÏßÉÏ£¬ÊÔÓÃmµÄ´úÊýʽ±íʾ¡÷PBMµÄÃæ»ý£»µãPÔÚʲôλÖÃʱ£¬¡÷PBMµÄÃæ»ý×î´ó£¿Çó³öÕâʱµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬Å×ÎïÏßy=ax2+bx-4ÓëxÖá½»ÓÚA£¬BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¬¶Ô³ÆÖáÊÇÖ±Ïßx=$\frac{5}{2}$£¬Ö±Ïßy=$\frac{1}{2}$x-4¾­¹ýB£¬CÁ½µã£®
£¨1£©Çó¸ÃÅ×ÎïÏߵĹØϵʽ£»
£¨2£©ÈôÔÚ¶Ô³ÆÖáÓÒ²àµÄÅ×ÎïÏßÉÏÓÐÒ»µãP£¬¹ýµãP×÷PD¡ÍÖ±ÏßBC£¬´¹×ãΪµãD£¬µ±¡ÏPBD=¡ÏACOʱ£¬Çó³öµãPµÄ×ø±ê£»
£¨3£©Èçͼ2£¬¹ýµãC×÷CE¡ÎxÖá½»Å×ÎïÏßÓÚµãE£¬Á¬½ÓAE£¬µãFÊÇÏ߶ÎCEÉϵĶ¯µã£¬¹ýµãF×÷FG¡ÍxÖᣬ½»AEÓÚH£¬´¹×ãΪµãG£¬½«¡÷EFHÑØÖ±ÏßAE·­ÕÛ£¬µÃµ½¡÷EMH£¬Á¬½ÓGM£¬ÊÇ·ñ´æÔÚÕâÑùµÄµãF£¬Ê¹¡÷GHMÊǵÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³ö¶ÔÓ¦µÄEFµÄ³¤¶È£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÔÚµÈÑü¡÷ABCÖУ¬¶¥½Ç¡ÏA=100¡ã£¬×÷¡ÏBµÄƽ·ÖÏß½»ACÓÚµãE£¬ÇóÖ¤£ºAE+BE=BC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èôa+b£¼0£¬a•b£¼0£¬-b£¼0£¬´ÓСµ½´óÅÅÁÐa£¬-a£¬b£¬-b²¢Óá°£¼¡±Á¬½Óa£¼-b£¼b£¼-a£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÏÂÁÐÑ¡ÏîÖУ¬ÄÜÇå³þµØ·´Ó³Êý¾ÝµÄ¸öÊý±ä»¯Çé¿öµÄͳ¼ÆͼÊÇ£¨¡¡¡¡£©
A£®ÉÈÐÎͼB£®ÌõÐÎͼC£®ÕÛÏßͼD£®Ö±·½Í¼

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸