精英家教网 > 初中数学 > 题目详情
1.边长为6的等边三角形的高为3$\sqrt{3}$.

分析 根据等腰三角形的三线合一,以及勾股定即可求解.

解答 解:底边的一半是3.再根据勾股定理,得它的高为$\sqrt{{6}^{2}-{3}^{2}}$=3$\sqrt{3}$.
故答案为:3$\sqrt{3}$

点评 考查了等腰三角形的三线合一性质以及勾股定理,关键是根据等腰三角形的三线合一解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.图(a)、图(b)是两张形状,大小完全相同的8×8的方格纸,方格纸中的每个小正方形的边长均为1,请在图(a)、图(b)中分别画出符合要求的图形,要求:所画图形各顶点必须与方格纸中的小正方形顶点重合.
(1)以AB为一边,画一个成中心对称的四边形ABCD,使其面积为12;
(2)以EF为一边,画△EFP,使其面积为$\frac{15}{2}$的轴对称图形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图1,在△ABC和△MNB中,∠ACB=∠MBN=90°,AC=BC=4,MB=NB=2,点N在BC边上,连接AN,CM,点E,F,D,G分别为AC,AN,MN,CM的中点,连接EF,FD,DG,EG.
(1)判断四边形EFDG的形状,并证明;
(2)求FD的长;
(3)如图2,将图1中的△MBN绕点B逆时针旋转90°,其他条件不变,猜想此时四边形EFDG的形状,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在平面直角坐标系中,矩形OABC的边OA=4,OC=3,且顶点A、C均在坐标轴上,动点M从点A出发,以每秒1个单位长度的速度沿AO向终点O移动;点N从点C出发沿CB向终点B以同样的速度移动,当两个动点运动了x秒(0<x<4)时,过点N作NP⊥BC交BO于点P,连接MP.
(1)直接写出点B的坐标,并求出点P的坐标(用含x的式子表示);
(2)设△OMP的面积为S,求S与x之间的函数表达式;若存在最大值,求出S的最大值;
(3)在两个动点运动的过程中,是否存在某一时刻,使△OMP时等腰三角形?若存在,求出x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,将边长为1个单位长度的正方形ABCD置于平面直角坐标系内,如果BC与x轴平行,且点A的坐标是(2,2),那么点C的坐标为(3,1).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.若$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$是方程ax-y=0的解,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.方程组$\left\{\begin{array}{l}{(x-7)(x+8)=0}\\{\sqrt{2}x-\frac{1}{2}y=1}\end{array}\right.$共有2组解.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.某天早晨,小明去体育馆晨练,如图是他离家的距离S(千米)与时间t(分钟)的函数图象,根据图象信息,下列说法正确的是(  )
A.小明去时所用的时间多于回家所用的时间
B.小明在体育馆锻炼了30分钟
C.小明去时的速度大于回家的速度
D.小明去时走上坡路,回家时走下坡路

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,将平行四边形ABCD的边AB延长至点E,使BE=AB,连接DE,EC,DE,交BC于点O.
(1)求证:△ABD≌△BEC;
(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.

查看答案和解析>>

同步练习册答案