精英家教网 > 初中数学 > 题目详情
如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是(   )
A.12B.24C.D.
D.

试题分析:
【分析】如图,连接BE,
∵在矩形ABCD中,AD∥BC,∠EFB=60°,
∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°.
∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°.
∴∠AEB=∠AEF-∠BEF=120°-60°="60°." ∴∠ABE=30°.
∴在Rt△ABE中,AB= 2.
∵AE=2,DE=6,∴AD=AE+DE=2+6=8.
∴矩形ABCD的面积=AB•AD=2×8=16.
故选D.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知矩形OABC的A点在x轴上,C点在y轴上,
(1)在BC边上求作一点E,使OE=OA;(保留作图痕迹,不写画法)
(2)求出点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.
(1)①∠MPN=          
②求证:PM+PN=3a;
(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;
(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:
问题情境:如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=SABF(S表示面积)

问题迁移:如图2:在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.

实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66°,∠POB=30°,OP=4km,试求△MON的面积.(结果精确到0.1km2)(参考数据:sin66°≈0.91,tan66°≈2.25,≈1.73)
拓展延伸:如图4,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)(6,3)()、(4、2),过点p的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.
(1)求边DA在旋转过程中所扫过的面积;
(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;
(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,计算∠A+∠B+∠C+∠E+∠F+∠AGF=        °

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在?ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是      (结果保留π).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD中,扇形BAC与扇形CBD的弧交于点E, AB=2cm.则图中阴影部分面积为     

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知等腰梯形ABCD的底角∠B=45°,高AE=1,上底AD=1,则其面积为(  )
A.4B.C.1D.2

查看答案和解析>>

同步练习册答案