精英家教网 > 初中数学 > 题目详情
如图,在直角梯形ABCD中,ADBC,∠B=90°,AD=13厘米,BC=16厘米,CD=5厘米,AB为⊙O的直径,动点P沿AD方向从点A开始向点D以1厘米/秒的速度运动,动点Q沿CB方向从点C开始向点B以2厘米/秒的速度运动,点P、Q分别从A、C两点同时出发,当其中一点停止时,另一点也随之停止运动.
(1)求⊙O的直径;
(2)求四边形PQCD的面积y关于P、Q运动时间t的函数关系式,并求当四边形PQCD为等腰梯形时,四边形PQCD的面积;
(3)是否存在某一时刻t,使直线PQ与⊙O相切?若存在,求出t的值;若不存在,请说明理由.
(1)过点D作DE⊥BC于E,
BE=AD=13,
∵BC=16,
∴EC=3,
在Rt△DCE中,由于DC=5,
则DE=
52-32
=4

所以圆的直径为4厘米;

(2)当P,Q运动t秒时,由点P,Q的运动速度为1厘米/秒和2厘米/秒,
所以PD=(13-t)厘米,CQ=2t厘米,
所以四边形PQCD的面积为y=
1
2
AB•(PD+CQ)

即y=2t+26(0<t≤8);
当四边形PQCD为等腰梯形时,CQ-PD=2CE,
所以2t-(13-t)=6,解得t=
19
3

这时y四边形PQCD=
116
3
厘米2

(3)存在.若PQ与圆相切,切点G,作PH⊥BC于H,
所以PA=PG=t,QG=QB=16-2t,
又得到QH=QB-HB=(16-2t)-t=16-3t,PQ=BQ+AP=16-t,
根据勾股定理得PQ2=PH2+QH2
所以(16-t)2=16+(16-3t)2
解得t1=4+
14
,t2=4-
14

因为4+
14
和4-
14
都在0<t≤8内,所以在t=(4+
14
)秒或t=(4-
14
)秒时,直线PQ与圆相切.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知AB⊥MN,垂足为点B,P是射线BN上的一个动点,AC⊥AP,∠ACP=∠BAP,AB=4,BP=x,CP=y,点C到MN的距离为线段CD的长.
(1)求y关于x的函数解析式,并写出它的定义域;
(2)在点P的运动过程中,点C到MN的距离是否会发生变化?如果发生变化,请用x的代数式表示这段距离;如果不发生变化,请求出这段距离;
(3)如果圆C与直线MN相切,且与以BP为半径的圆P也相切,求BP:PD的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,直线y=
3
4
x+3
与x轴、y轴分别交于A、B两点,已知点C(0,-1)、D(0,k),且0<k<3,以点D为圆心、DC为半径作⊙D,当⊙D与直线AB相切时,k的值为(  )
A.
5
9
B.
2
3
C.
7
9
D.
8
9

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PAB为割线且PA=AB,PO交⊙O于C,若OC=3,OP=5,则AB的长为(  )
A.
10
B.2
2
C.
6
D.
5

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在
AB
上,若PA长为2,则△PEF的周长是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,AB为⊙O的直径,AC与⊙O相切于点A,CEAB交⊙O于D、E.求证:EB2=CD•AB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB为⊙O的直径,直线BC与⊙O相切于点B,过A作ADOC交⊙O于点D,连接CD.
(1)求证:CD是⊙O的切线;
(2)若AD=2,直径AB=6,求线段BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB、AC、BD是⊙O的切线,P、C、D为切点,如果AB=5,AC=3,则BD的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB为⊙O的直径,PA与⊙O相切于点A,线段OP与弦AC垂直并相交于点D,OP与弧AC相交于点E,连接BC.
(1)求证:∠PAC=∠B,且PA•BC=AB•CD;
(2)若PA=10,sinP=
3
5
,求PE的长.

查看答案和解析>>

同步练习册答案