精英家教网 > 初中数学 > 题目详情
2、在直角坐标平面内,如果抛物线y=-x2+3经过平移可以与抛物线y=-x2互相重合,那么平移的要求是(  )
分析:根据“上加下减”的原则进行解答.
解答:解:把抛物线y=-x2+3向下平移3个单位即可得到抛物线y=-x2
故选B.
点评:本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),精英家教网直线CM∥x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,连接OD.
(1)求b的值和点D的坐标;
(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;
(3)在(2)的条件下,如果以PD为半径的圆P与圆O外切,求圆O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c(a≠0)与y轴正半轴交于点C,与x轴交于点A(2精英家教网,0)、B(8,0),∠OCA=∠OBC.
(1)求抛物线的解析式;
(2)在直角坐标平面内确定点M,使得以点M、A、B、C为顶点的四边形是平行四边形,请直接写出点M的坐标;
(3)若存在一点P到点A、B、C三点的距离相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标平面内,O为原点,抛物线y=ax2+bx经过点A(6,0),且顶点B(m,6)在直线y=2x上.
(1)求m的值和抛物线y=ax2+bx的解析式;
(2)如在线段OB上有一点C,满足OC=2CB,在x轴上有一点D(10,0),连接DC,且直线DC与y轴交于点E.
①求直线DC的解析式;
②如点M是直线DC上的一个动点,在x轴上方的平面内有另一点N,且以O、E、M、N为顶点的四边形是菱形,请求出点N的坐标.(直接写出结果,不需要过程.)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•镇赉县模拟)如图,在直角坐标平面内,函数y=
mx
(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,BD与AC交于点H,连接AD.
(1)若△ABD的面积为4,求m值及点B的坐标.
(2)在(1)的条件下,求直线AB的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标平面内的△ABC中,点A的坐标为(0,2),点C的坐标为(5,5),要使以A、B、C、D为顶点的四边形是平行四边形,且点D坐标在第一象限,那么点D的坐标是
(2,5)或(8,5)
(2,5)或(8,5)

查看答案和解析>>

同步练习册答案