精英家教网 > 初中数学 > 题目详情
(2000•辽宁)如图,⊙O中的弦BC=6cm,圆周角∠BAC=60°,求图中阴影部分的面积.(结果不取近似值)

【答案】分析:连接OB、OC,作OD⊥BC于D.
阴影部分的面积即为扇形OBC的面积减去三角形OBC的面积.
根据圆周角定理求得∠BOC的度数,根据三角形的内角和定理和等腰三角形的性质求得∠OCB的度数,再根据锐角三角函数的知识求得OD、OC的长,从而进一步求解.
解答:解:连接OB、OC,作OD⊥BC于D.
∵圆心角∠BOC与圆周角∠BAC对的弧都为,且∠BAC=60°,
∴∠BOC=2∠BAC=120°.
∵OB=OC,
∴∠OBC=∠OCB=30°.
∵OD⊥BC,
∴D为BC中点,又BC=6,
∴CD=3.
∴OD=,OC=2
∴阴影部分的面积=-×6×=4π-3
点评:此题综合运用了垂径定理、圆周角定理、等腰三角形的性质、三角形的内角和定理以及锐角三角函数的知识.
练习册系列答案
相关习题

科目:初中数学 来源:2000年全国中考数学试题汇编《圆》(06)(解析版) 题型:解答题

(2000•辽宁)如图,以坐标原点O为圆心,6为半径的圆交y轴于A、B两点.AM、BN为⊙O的切线.D是切线AM上一点(D与A不重合),DE切⊙O于点E,与BN交于点C,且AD<BC.设AD=m,BC=n.
(1)求m•n的值;
(2)若m、n是方程2t2-30t+k=0的两根.求:
①△COD的面积;
②CD所在直线的解析式;
③切点E的坐标.

查看答案和解析>>

科目:初中数学 来源:2000年全国中考数学试题汇编《圆》(05)(解析版) 题型:解答题

(2000•辽宁)如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,点C的坐标为(0,).
(1)直接写出A、B、D三点坐标;
(2)若抛物线y=x2+bx+c过A、D两点,求这条抛物线的解析式,并判断点B是否在所求的抛物线上,说明理由.

查看答案和解析>>

科目:初中数学 来源:2000年全国中考数学试题汇编《三角形》(03)(解析版) 题型:解答题

(2000•辽宁)如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,点C的坐标为(0,).
(1)直接写出A、B、D三点坐标;
(2)若抛物线y=x2+bx+c过A、D两点,求这条抛物线的解析式,并判断点B是否在所求的抛物线上,说明理由.

查看答案和解析>>

科目:初中数学 来源:2000年全国中考数学试题汇编《二次函数》(02)(解析版) 题型:解答题

(2000•辽宁)如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,点C的坐标为(0,).
(1)直接写出A、B、D三点坐标;
(2)若抛物线y=x2+bx+c过A、D两点,求这条抛物线的解析式,并判断点B是否在所求的抛物线上,说明理由.

查看答案和解析>>

科目:初中数学 来源:2000年辽宁省中考数学试卷(解析版) 题型:解答题

(2000•辽宁)如图,以坐标原点O为圆心,6为半径的圆交y轴于A、B两点.AM、BN为⊙O的切线.D是切线AM上一点(D与A不重合),DE切⊙O于点E,与BN交于点C,且AD<BC.设AD=m,BC=n.
(1)求m•n的值;
(2)若m、n是方程2t2-30t+k=0的两根.求:
①△COD的面积;
②CD所在直线的解析式;
③切点E的坐标.

查看答案和解析>>

同步练习册答案