【题目】如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画圆,P是⊙O上一动点且在第一象限内,过点P作⊙O的切线,与x、y轴分别交于点A、B.
(1)求证:△OBP与△OPA相似;
(2)当点P为AB中点时,求出P点坐标;
(3)在⊙O上是否存在一点Q,使得以Q,O,A、P为顶点的四边形是平行四边形.若存在,试求出Q点坐标;若不存在,请说明理由.
【答案】(1)见解析;(2)P点坐标是(, );(3)存在;Q点坐标是(,﹣).
【解析】试题分析:(1)在Rt△OAB中,由切线的性质知:OP⊥AB,易证得△OAP∽△BPO.
(2)当P为AB中点时,由于OP⊥AB,那么OP平分∠AOB,即P点的横、纵坐标相等,已知OP的长,易求得点P的坐标.
(3)此题应分两种情况:
①OP为对角线,此时OQ∥AP,由于∠OPA=90°,那么∠POQ=90°,即△POQ是等腰直角三角形,已知OA⊥OB,那么OB⊥PQ,此时OB为∠POQ的对角线,即P、Q关于y轴对称由此得解;
②OP为边,此时OP∥AQ,由于∠OPA=90°,那么平行四边形OPAQ为矩形,即∠POQ是等腰直角三角形,解法同①.
解:(1)证明:
∵AB是过点P的切线,
∴AB⊥OP,∴∠OPB=∠OPA=90°;
∴在Rt△OPB中,∠1+∠3=90°,
又∵∠BOA=90°∴∠1+∠2=90°,
∴∠2=∠3;
在△OPB中△APO中,
∴△OPB∽△APO.
(2)∵OP⊥AB,且PA=PB,
∴OA=OB,
∴△AOB是等腰三角形,
∴OP是∠AOB的平分线,
∴点P到x、y轴的距离相等;
又∵点P在第一象限,
∴设点P(x,x)(x>0),
∵圆的半径为2,
∴OP=,解得x=或x=﹣(舍去),
∴P点坐标是(,).
(3)存在;
①如图设OAPQ为平行四边形,∴PQ∥OA,OQ∥PA;
∵AB⊥OP,∴OQ⊥OP,PQ⊥OB,
∴∠POQ=90°,
∵OP=OQ,
∴△POQ是等腰直角三角形,
∴OB是∠POQ的平分线且是边PQ上的中垂线,
∴∠BOQ=∠BOP=45°,
∴∠AOP=45°,
设P(x,x)、Q(﹣x,x)(x>0),
∵OP=2代入得,解得x=,
∴Q点坐标是(﹣,);(1分)
②如图示OPAQ为平行四边形,
同理可得Q点坐标是(,﹣).
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于B.
(1)求直线CB的解析式;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴交的点恰为⊙A与x轴的交点,求该抛物线的解析式;
(3)试判断C是否在抛物线上?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B5的坐标是_____________ 。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:我们知道:如果点A.B在数轴上分别表示有理数a、b,那么A.B两点之间的距离表示为AB,在数轴上A.B两点之间的距离AB=|ab|.
根据上述材料,利用数轴解答下列问题:
(1)如果点A在数轴上表示2,将点A先向左平移2个单位长度,再向右移动7个单位长度,那么终点B在数轴上表示的数是___;
(2)数轴上表示x和1的两个点之间的距离是___;
(3)若|x3|+|x+2|=7,则x的值是___;
(4)在(1)的条件下,设点P在数轴上表示的数为x,当|PA||PB|=2时,则x的值是___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某农场要建一个长方形ABCD的养鸡场,鸡场的一边靠墙,(墙长25m)另外三边用木栏围成,木栏长40m.
(1)若养鸡场面积为168m2,求鸡场垂直于墙的一边AB的长.
(2)请问应怎样围才能使养鸡场面积最大?最大的面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形的边长为2, 边在轴上, 的中点与原点重合,过定点与动点的直线记作.
(1)若的解析式为,判断此时点是否在直线上,并说明理由;
(2)当直线与边有公共点时,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:
说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下
(1)样本中D级的学生人数占全班学生人数的百分比是 ;
(2)扇形统计图中A级所在的扇形的圆心角度数是 ;
(3)请把条形统计图补充完整;
(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年12月14日,中国教育学会第32次学术年会在山东济南召开,某校选派16名教师前往参会,准备用一辆七座汽车(除司机外限载6人,从学校出发),送16位教师去高铁站与机场,其中11位教师准备一起到学校正东方向25千米处的机场,另外5位教师准备一起到学校正东方向15千米处的高铁站,其中去机场的老师中有6人因工作需要需先赶去机场,已知这辆汽车的平均速度为45千米/小时,教师步行的平均速度为5千米/小时.(注:不计教师上、下车时间,教师上车后,中途不下车,汽车到达目的地后立即沿原路返回)
(1)求汽车送第一批教师到达机场所用的时间.
(2)若只有这辆汽车送这16位教师去目的地后返回学校,请设计一种方案使该车所用总时间最短,并求出这个最短时间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com