精英家教网 > 初中数学 > 题目详情
2.如图,在△ABC中,∠ACB=90°,∠A=15°,D是边AB的中点,DE⊥AB交AC于点E.
(1)求∠CDE的度数;
(2)求CE:EA.

分析 (1)根据直角三角形斜边上中线得出CD=AD=BD,求出∠DCA=∠A=15°,求出∠BDC=∠A+∠DCA=30°,即可得出答案;
(2)根据线段垂直平分线性质求出BE=AE,求出CE和BE的比,即可得出答案.

解答 解:(1)∵在△ABC中,∠ACB=90°,D是边AB的中点,
∴CD=AD=BD,
∴∠DCA=∠A,
∵∠A=15°,
∴∠DCA=15°,
∴∠BDC=∠A+∠DCA=30°,
∵ED⊥AB,
∴∠EDB=90°,
∴∠CDE=90°-30°=60°;

(2)
连接BE,
∵D为AB中点,DE⊥AB,
∴BE=AE,
∴∠EBA=∠A=15•,
∴∠BEC=15°+15°=30°,
∴cos30°=$\frac{CE}{BE}$,
∵AE=BE,
∴$\frac{CE}{AE}$=$\frac{\sqrt{3}}{2}$.

点评 本题考查了直角三角形斜边上中线性质,线段垂直平分线性质,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.张华在一次测验中计算一个多项式M加上5xy-3yz+2xz时,不小心看成减去5xy-3yz+2xz,结果计算出错误答案为2xy+6yz-4xz.
(1)求多项式M;
(2)试求出原题目的正确答案.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,在平面直角坐标系中,已知A(0,4),B(-1,0),在y轴上有一动点G,则BG+$\frac{1}{3}$AG的最小值为$\frac{4+2\sqrt{2}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知,⊙O的两条弦AB、CD相交于点E,
(1)如图1,若BE=DE,求证:$\widehat{AD}$=$\widehat{BC}$;
(2)如图2,在(1)的条件下,连接OC,AP为⊙O的直径,PQ为⊙O的弦,且PQ∥AB,求证:∠OCD=∠APQ;
(3)如图3,在(2)的条件下,连接BD分别与OA、OC交于点G、H,连接DQ,设CD与AP交于点F,
若PQ=2CF,BH=5GH,DQ=4,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.(1)计算:tan60°+2sin45°-2cos30°;         
(2)解方程:x2-4x-5=0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如果+90元表示收入90元,那么支出60元记作-60元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.解方程:$\frac{2x-1}{2}$-$\frac{x}{4}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.(1)如图1,梯形ABCD中对角线交于点O,AD∥BC,请证明S△AOB=S△DOC
(2)如图2,等腰直角三角形ABC,AB=AC,∠A=90°,D为边BC上一动点,过D分别作DE∥AC,DF∥AB,连结BF交DE于M,连结CE交DF于N,求证:DM=DN.
(提示:运用(1)中的结论,面积法)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知二次函数y=ax2-2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B垂直于x轴的直线交于点D,且CP:PD=1:2
(1)求A、B两点的坐标;
(2)若tan∠PDB=1,求这个二次函数的关系式;
(3)在(2)的基础上,将直线CP先绕点C旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,Q是直线n上的动点,是否存在点Q,使△OPQ为直角三角形?若存在,求出所有点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案