精英家教网 > 初中数学 > 题目详情

【题目】一夜之间,新冠病毒肺炎席卷全球。疫情期间,我国为保障大家的健康,各地采取了多种方式预防。其中,某地运用无人机规劝居民回家。如图,无人机于空中 A 处测得某建筑顶部 B 处的仰角为 45°,测得该建筑底部 C 处的俯角为 17°.若无人机的飞行高度 AD 62m,求该建筑的高度 BC .(参考数据:sin17°≈029cos17°≈096tan17°≈031

【答案】该建筑的高度BC.

【解析】

AEBCE点,根据正切的定义求出AE,再利用等腰直角三角形的性质求出BE,然后进一步根据图形计算求解即可.

如图所示,作AEBCE点,

则四边形ADCE为矩形,

EC=AD=

RtAEC中,tanEAC=

RtAEC中,∠BAE=45°

BE=AE=

BC=BE+EC=262

即该建筑的高度BC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为好玩三角形.若RtABC是好玩三角形,且∠C90°BC≥AC,则sinB_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某校教学楼与实验楼的水平间距米,在实验楼顶部点测得教学楼顶部点的仰角是,底部点的俯角是,则教学楼的高度是____米(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点是反比例函数在第一象限图像上的一个动点,连接,以 为长,为宽作矩形且点在第四象限,随着点的运动,点也随之运动,但点始终在反比例函数的图像上,则的值为(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点M放在正方形ABCD的对角线AC(不与点A重合)上滑动,连结DM,做MN⊥DM,交直线ABN

(1)求证:DM=MN;

(2)若将(1)中的正方形变为矩形,其余条件不变如图,且DC=2AD,求MD:MN的值;

(3)在(2)中,若CD=nAD,当M滑动到CA的延长线上时(如图3),请你直接写出MDMN的比值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,正方形纸片ABCD边长为2,折叠∠B和∠D,使两个直角的顶点重合于对角线BD上的一点PEFGH分别是折痕(图2),设AE=x0x2),给出下列判断:①x=时,EF+ABAC;②六边形AEFCHG周长的值为定值;③六边形AEFCHG面积为定值,其中正确的是(  )

A.①②B.①③C.D.②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线Ly=x+2x轴、y轴分别交于AB两点,在y轴上有一点N04),动点MA点以每秒1个单位的速度匀速沿x轴向左移动.

1)点A的坐标:_____;点B的坐标:_____

2)求NOM的面积SM的移动时间t之间的函数关系式;

3)在y轴右边,当t为何值时,NOMAOB,求出此时点M的坐标;

4)在(3)的条件下,若点G是线段ON上一点,连结MGMGN沿MG折叠,点N恰好落在x轴上的点H处,求点G的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点DE⊙O上一点,且∠AED=45°

1)判断CD⊙O的位置关系,并说明理由;

2)若⊙O半径为4cmAE=6cm,求∠ADE的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季两种价格标准,旺季每辆货车的日租金比淡季上涨.据统计,淡季该公司平均每天有辆货车未出租,日租金总收入为元;旺季所有的货车每天能全部租出,日租金总收入为元.

1)该出租公司这批对外出租的货车共有多少辆?淡季每辆货车的日租金多少元?

2)经市场调查发现,在旺季如果每辆货车的日租金每上涨元,每天租出去的货车就会减少辆,不考虑其它因素,每辆货车的日租金上涨多少元时,该出租公司的日租金总收入最高?

查看答案和解析>>

同步练习册答案