【题目】如图,中,,,,点是中点,将沿着直线翻折,得到,连接,则线段的长等于( )
A.4B.C.D.5
【答案】C
【解析】
延长CE交AD于F,连接BD,先判定△ABC∽△CAF,即可得到CF=6.4,EF=CF-CE=1.4,再依据EF为△ABD的中位线,即可得出BD=2EF=2.8,最后根据∠ADB=90°,即可运用勾股定理求得AD的长.
解:如图,延长CE交AD于F,连接BD,
∵∠ACB=90°,AC=4,BC=3,
∴AB=5,
∵∠ACB=90°,CE为中线,
∴CE=AE=BE=,
∴∠ACF=∠BAC,
又∵∠AFC=∠BCA=90°,
∴△ABC∽△CAF,
∴,即,
∴CF=3.2,
∴EF=CF-CE=0.7,
由折叠可得,AC=DC,AE=DE,
∴CE垂直平分AD,
又∵E为AB的中点,
∴EF为△ABD的中位线,
∴BD=2EF=1.4,
∵AE=BE=DE,
∴∠DAE=∠ADE,∠BDE=∠DBE,
又∵∠DAE+∠ADE+∠BDE+∠DBE=180°,
∴∠ADB=∠ADE+∠BDE=90°,
∴Rt△ABD中,AD=,
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,放在直角坐标系中的正方形ABCD边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点数作为直角坐标中P点的坐标)第一次的点数作横坐标,第二次的点数作纵坐标).
(1)求P点落在正方形ABCD面上(含正方形内部和边界)的概率.
(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD
面上的概率为0.75;若存在,指出其中的一种平移方式;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“2018双十一购物狂欢节”,京东商城当天的交易额约1600亿元.“预计在2020双十一购物狂欢节”京东商城当天的交易额能达到约1936亿元.
(1)求出2018至2020年京东商城双十一当天的交易额的年平均增长率;
(2)刘老师在“双十一”到来之前,分别在京东商城的两家店里选了一套标价为1900元的书籍和一件标价为990元的羽绒服.据了解,双十一当天书籍打五五折后再降价n%.同时,该羽绒服店的老板先将羽绒服提价n%,双十一当天再降价n%,最后刘老师双十一购买两种商品所花费的总金额恰好是1760元.求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y=(2m+1)x+m﹣3.
(1)若函数图象经过原点,求m的值;
(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;
(3)若这个函数是一次函数,且图象不经过第四象限,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】春节前小明花1200元从市场购进批发价分别为每箱30元与50元的、两种水果进行销售,分别以每箱35元与60元的价格出售,设购进水果箱,水果箱.
(1)求关于的函数表达式;
(2)若要求购进水果的数量不少于水果的数量,则应该如何分配购进、水果的数量并全部售出才能获得最大利润,此时最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根.
(1)求实数k的取值范围.
(2)若方程两实根满足|x1|+|x2|=x1·x2,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.
(1)求证:BD是⊙O的切线.
(2)若AB=,E是半圆上一动点,连接AE,AD,DE.
填空:
①当的长度是____________时,四边形ABDE是菱形;
②当的长度是____________时,△ADE是直角三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com