精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,ABDE是直立在地面上的两根立柱.AB=7m,某一时刻AB在太阳光下的投影BC=4m.

(1)请你在图中画出此时DE在阳光下的投影;

(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为8m,计算DE的长.

【答案】(1)详见解析;(2)DE=14m.

【解析】

(1)根据同一时刻的光线互相平行,作平行线即可,

(2)利用三角形相似,列出比例式即可解题.

解:(1)连接AC,过点DDF∥AC,交直线BC于点F,线段EF即为DE的投影.

(2)∵AC∥DF,

∴∠ACB=∠DFE.

∵∠ABC=∠DEF=90°

∴△ABC∽△DEF.

∴AB:DE=BC:EF,

∵AB=7m,BC=4m,EF=8

∴7:4=DE:8

∴DE=14(m).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形纸片ABCD中,AB6BC10,点ECD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处,点GAF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:EBG45°;②SABGSFGHDEF∽△ABG④AG+DFFG.其中正确的是_____.(把所有正确结论的序号都选上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数 yax2+bx+c 的图象交 x 轴于AB 两点,交 y 轴于 C 点,P y 轴上的一个动点,已知 A(﹣2,0)、C(0,﹣2,且抛物线的对称轴是直线 x=1.

(1)求此二次函数的解析式;

(2)连接 PB,则 PC+PB 的最小值是

(3)连接 PAPBP 点运动到何处时,使得APB=60°,请求出 P 点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】益民商店经销某种商品,进价为每件80元,商店销售该商品每件售价高干8元且不超过120元若售价定为每件120元时,每天可销售200件,市场调查反映:该商品售价在120元的基础上,每降价1元,每天可多销售10件,设该商品的售价为元,每天销售该商品的数量为件.

(1)之间的函数关系式;

(2)商店在销售该商品时,除成本外每天还需支付其余各种费用1000元,益民商店在某一天销售该商品时共获利8000元,求这一天该商品的售价为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂设计了一款成本为20/件的工艺品投放市场进行试销,经过调查,得到如下数据:

销售单价x(元件)

30

40

50

60

每天销售量y(件)

500

400

300

200

(1)研究发现,每天销售量y与单价x满足一次函数关系,求出yx的关系式;

(2)当地物价部门规定,该工艺品销售单价最高不能超过45/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图分别是两根木棒及其影子的情形.

(1)哪个图反映了太阳光下的情形?哪个图反映了路灯下的情形?

(2)在太阳光下,已知小明的身高是1.8米,影长是1.2米,旗杆的影长是4米,求旗杆的高;

(3)请在图中分别画出表示第三根木棒的影长的线段.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y上运动,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景

如图1,在正方形ABCD的内部,作DAE=ABF=BCG=CDH,根据三角形全等的条件,易得DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形。

类比研究

如图2,在正ABC的内部,作BAD=CBE=ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)。

(1)ABD,BCE,CAF是否全等?如果是,请选择其中一对进行证明;

(2)DEF是否为正三角形?请说明理由;

(3)进一步探究发现,ABD的三边存在一定的等量关系,设,请探索满足的等量关系。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b与坐标轴交于C,D两点,直线AB与坐标轴交于A,B两点,线段OA,OC的长是方程x2﹣3x+2=0的两个根(OA>OC).

(1)求点A,C的坐标;

(2)直线AB与直线CD交于点E,若点E是线段AB的中点,反比例函数y=(k≠0)的图象的一个分支经过点E,求k的值;

(3)在(2)的条件下,点M在直线CD上,坐标平面内是否存在点N,使以点B,E,M,N为顶点的四边形是菱形?若存在,请直接写出满足条件的点N的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案