精英家教网 > 初中数学 > 题目详情
已知正方形ABCD,AC、BD交于O点,将一个三角板的直角顶点与O重合,它的两条直角边分别与AB、BC相交于点E、F.
(1)当三角板绕点O旋转到OE与AB垂直时(如图1),求证:BE+BF=
2
OB.
(2)当三角板在(1)的条件下绕点O逆时针旋转a°(0°<a<45°)时,如图2,上述结论是否成立?若成立,请给予证明;若不成立请说明理由.
分析:(1)根据正方形性质得出OB=OC,∠EBO=∠OCF=45°,OB⊥OC,根据勾股定理求出BC=
2
OB,证△BOE≌△COF,推出BE=CF即可;
(2)根据正方形性质得出OB=OC,∠EBO=∠OCF=45°,OB⊥OC,根据勾股定理求出BC=
2
OB,证△BOE≌△COF,推出BE=CF即可.
解答:(1)证明:∵ABCD是正方形,O为对角线AC、BD的交点,
∴OB=OC,∠EBO=∠OCF=45°,OB⊥OC,BC=
OB2+OC2
=
2
OB.
又∵OE⊥AB,OF⊥BC,
∴∠OEB=∠OFC=90°,∠EOF=∠BOC=90°,
∴∠EOF-∠BOF=∠BOC-∠BOF,
∴∠EOB=∠FOC,
在△EOB和△FOC中,
∠EOB=∠FOC
OB=OC
∠EBO=∠FCO

∴△BOE≌△COF(ASA),
∴BE=CF,
∴BE+BF=CF+BF=BC=
2
OB.

(2)BE+BF=
2
OB仍然成立.
证明:∵∠EOB+∠BOF=90°,∠COF+∠BOF=90°
∴∠EOB=∠COF,
又∵OB=OC,∠OBE=∠OCF=45°,
∴在△BOE和△COF中
∠EOB=∠FOC
OB=OC
∠EBO=∠FCO

∴△BOE≌△COF(ASA),
∴BE=CF,
∴BE+BF=CF+BF=BC=
2
OB.
点评:本题考查了正方形性质,全等三角形性质和判定,勾股定理的应用,关键是推出△BOE≌△COF,证明过程类似.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,已知正方形ABCD中,对角线AC、BD交于O点,过O点作OE⊥OF分别交DC于E,交BC于F,∠FEC的角平分线EP交直线AC于P.
(1)①求证:OE=OF;
②写出线段EF、PC、BC之间的一个等量关系式,并证明你的结论;
(2)如图2,当∠EOF绕O点逆时针旋转一个角度,使E、F分别在CD、BC的延长线上,请完成图形并判断(1)中的结论①、②是否分别成立?若不成立,写出相应的结论(所写结论均不必证明).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的边长与Rt△EFG的直角边EF的长均为4cm,FG=8cm,AB与FG在同一条直线l上、开始时点F与点B重合,让Rt△EFG以每秒1cm速度在直线l上从右往左移动,精英家教网直至点G与点B重合为止.设x秒时Rt△EFG与正方形ABCD重叠部分的面积记为ycm2
(1)当x=2秒时,求y的值;
(2)求y与x之间的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知正方形ABCD的边长为4厘米,E,F分别为边DC,BC上的点,BF=1厘米,CE=2厘米,BE,DF相交于点G,求四边形CEGF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•惠山区一模)阅读与证明:
如图,已知正方形ABCD中,E、F分别是CD、BC上的点,且∠EAF=45°,

求证:BF+DE=EF.
分析:证明一条线段等于另两条线段的和,常用“截长法”或“补短法”,将线段BF、DE放在同一直线上,构造出一条与BF+DE相等的线段.如图1延长ED至点F′,使DF′=BF,连接A F′,易证△ABF≌△ADF′,进一步证明△AEF≌△AEF′,即可得结论.
(1)请你将下面的证明过程补充完整.
证明:延长ED至F′,使DF′=BF,
∵四边形ABCD是正方形
∴AB=AD,∠ABF=∠ADF′=90°,
∴△ABF≌△ADF’(SAS)
应用与拓展:如图建立平面直角坐标系,使顶点A与坐标原点O重合,边OB、OD分别在x轴、y轴的正半轴上.
(2)设正方形边长OB为30,当E为CD中点时,试问F为BC的几等分点?并求此时F点的坐标;
(3)设正方形边长OB为30,当EF最短时,直接写出直线EF的解析式:
y=-x+30
2
y=-x+30
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD边长为2,E、F、G、H分别为各边上的点,且AE=BF=CG=DH.
(1)求证:△EBF≌△FCG;
(2)设四边形EFGH的面积为s,AE为x,求s与x的函数解析式,并写出x的取值范围;
(3)当x为何值时,正方形EFGH的面积最小?最小值是多少?

查看答案和解析>>

同步练习册答案