精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,已知一次函数y=kx+b与反比例函数y=
mx
的图象交于点A(-3,1),B(1,n).
(1)求反比例函数及一次函数的解析式;
(2)根据图象写出一次函数的值大于反比例函数值的x的取值范围.
分析:(1)根据A、B在反比例函数的图象上,可求m、n的值,从而得反比例函数的解析式和B点坐标;根据直线经过A、B两点,用待定系数法求直线解析式.
(2)观察交点左右两边的图象,一次函数的图象在反比例函数的图象上面的部分对应的x的值即为取值范围.
解答:解:(1)∵点A(-3,1)在y=
m
x
上,∴m=-3.
∴反比例函数的解析式为y=-
3
x

又B(1,n)也在y=-
3
x
上,∴n=-3,
∴B(1,-3).
∵A、B在一次函数的图象上,
1=-3k+b
-3=k+b
,解得
k=-1
b=-2

∴一次函数的解析式为y=-x-2;
(2)观察图象知,一次函数的值大于反比例函数值的x的取值范围是x<-3或0<x<1.
点评:此题考查了运用待定系数法求函数解析式及利用函数图象解不等式,属基础题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=
mx
(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.
(1)求点A、B、D的坐标;
(2)求一次函数和反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知一次函数y=kx+m(k,m为常数)的图象经过点A(0,6),B(3,0),二次函数y=a精英家教网x2+bx+c的图象经过点A和点C,点C是二次函数图象上的最低点,并且满足AC=2BC
(1)求一次函数的解析式;
(2)求二次函数的解析式;
(3)判断关于x的方程ax2+bx+c=kx+m是否有实数根,如有,求出它的实数根;如没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知一次函数y1=kx+b的图象经过A(1,2)、B(-1,0)两点,y2=mx+n的图象经过A、C(3,0)两点,则不等式组0<kx+b<mx+n的解集是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知一次函数y1=ax+b和反比例函数y2=
kx
的图象交于A(2,1)和B(-1,-2)两点.
(1)求y1和y2的函数关系式.
(2)利用图象直接写出y1>y2时,自变量x的取值范围.

查看答案和解析>>

同步练习册答案