精英家教网 > 初中数学 > 题目详情
19.如图,甲、乙两渔船同时从港口O出发外出捕鱼,乙沿南偏东30°方向以每小时10海里的速度航行,甲沿南偏西75°方向以每小时10$\sqrt{2}$海里的速度航行,当航行1小时后,甲在A处发现自己的渔具掉在乙船上,于是迅速改变航向和速度,仍以匀速沿南偏东60°方向追赶乙船,正好在B处追上.则甲船追赶乙船的速度为10+10$\sqrt{3}$海里/小时?

分析 根据题意画图,过O向AB作垂线,根据特殊角的三角函数值求得AC、BC的值,从而求得AB的值.根据追及问题的求法求甲船追赶乙船的速度.

解答 解:如图:乙沿南偏东30°方向航行则∠DOB=30°,甲沿南偏西75°方向航行,则∠AOD=75°,
当航行1小时后甲沿南偏东60°方向追赶乙船,则∠2=90°-60°=30°.
∵∠3=∠AOD=75°,
∴∠1=90°-75°=15°,
故∠1+∠2=15°+30°=45°.
过O向AB作垂线,则∠AOC=90°-∠1-∠2=90°-15°-30°=45°,
∵OA=10 $\sqrt{3}$,∠OAB=∠AOC=45°,
∴OC=AC=OA•sin45°=10 $\sqrt{2}$×$\frac{\sqrt{2}}{2}$=10.
在Rt△OBC中,∠BOC=∠AOD+∠BOD-∠AOC=75°+30°-45°=60°,
∴BC=OC•tan60°=10 $\sqrt{3}$,
∴AB=AC+BC=10+10 $\sqrt{3}$.
因为OC=10海里,∠B=30°,所以OB=2OC=2×10=20,
乙船从O到B所用时间为20÷10=2小时,
由于甲从O到A所用时间为1小时,则从A到B所用时间为2-1=1小时,
甲船追赶乙船的速度为10+10 $\sqrt{3}$海里/小时.

点评 本题考查解直角三角形-方向角问题、勾股定理等知识,结合航海中的实际问题,转化为解直角三角形的相关知识,体现了数学应用于实际生活的思想.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.已知点P(x+3,x-4)在x轴上,则x的值为4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.为加快建设经济强、环境美、后劲足、群众富的实力微山,魅力微山,活力微山,幸福微山;聚力脱贫攻坚,全面完成脱贫任务,某乡镇特制定一系列帮扶甲、乙两贫困村的计划,现决定从某地运送1225箱鱼苗到甲、乙两村养殖.若用大、小货车共20辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力和其运往甲、乙两村的运费如表:
 车型 载货能力(箱/辆) 运费
 甲村(元/辆) 乙村(元/辆)
 大货车 70 800 900
 小货车 35 400 600
(1)求这20辆车中大、小货车各多少辆?
(2)现安排其中16辆货车前往甲村,其余货车前往乙村,设前往甲村的大货车为x辆,前往甲、乙两村总费用为y元,试求出y与x的函数解析式及x的取值范围;
(3)在(2)的条件下,若运往甲村的鱼苗不少于980箱,请你写出使总费用最少的货车调配方案,并求出最少费用.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.命题“等腰三角形两腰上的高相等”是真命题(填“真”或“假”),写出它的逆命题如果一个三角形两条边上的高相等,那么这个三角形是等腰三角形..

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,AC⊥BC,AC=6,BC=8,AB=10,则点B到AC的距离为8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某机构对2016年微信用户的职业颁布进行了随机抽样调查(职业说明:A:党政机关、军队,B:事业单位,C:企业,D:自由职业及人体户,E:学生,F:其他),图1和图2是根据调查数据绘制而成的不完整的统计图.请根据图中提供的信息,解答下列问题:

(1)该机构共抽查微信用户50000人;
(2)在图1中,补全条形统计图;
(3)在图2中,“D”用户所对应扇形的圆心角度数为90度;
(4)2016年微信用户约有7.5亿人,估计“E”用户大约有1.08亿人.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上),网格中小正方形的边长为1.
(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A2B2C2,并求点B两次运动路径总长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.计算:(2017-π)0-(-3)-2=$\frac{8}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.抛物线F与x轴相交于A、B两点(点A在点B的左边),对称轴为直线x=1,顶点C在直线y=x-5上,与y轴相交于点D(0,3).
(1)求抛物线F的解析式;
(2)连结CD、BD,则线段BD与CD的数量关系和位置关系分别为BD⊥CD,BD=3CD;
(3)点P为直线CD上方抛物线F上的一个动点,PQ⊥CD,垂足为Q,若∠QPD=∠DBC,求点P的坐标.

查看答案和解析>>

同步练习册答案