Èçͼ£¬Å×ÎïÏßF£ºy=ax2+bx+c£¨a£¾0£©ÓëyÖáÏཻÓÚµãC£¬Ö±ÏßL1¾­¹ýµãCÇÒƽÐÐÓÚxÖᣬ½«L1ÏòÉÏƽÒÆt¸öµ¥Î»µÃµ½Ö±ÏßL2£¬ÉèL1ÓëÅ×ÎïÏßFµÄ½»µãΪC¡¢D£¬L2ÓëÅ×ÎïÏßFµÄ½»µãΪA¡¢B£¬Á¬½ÓAC¡¢BC£®
£¨1£©µ±a=
1
2
£¬b=-
3
2
£¬c=1£¬t=2ʱ£¬Ì½¾¿¡÷ABCµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©Èô¡÷ABCΪֱ½ÇÈý½ÇÐΣ¬ÇótµÄÖµ£¨Óú¬aµÄʽ×Ó±íʾ£©£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÈôµãA¹ØÓÚyÖáµÄ¶Ô³ÆµãA¡¯Ç¡ºÃÔÚÅ×ÎïÏßFµÄ¶Ô³ÆÖáÉÏ£¬Á¬½ÓA¡¯C£¬BD£¬ÇóËıßÐÎA¡¯CDBµÄÃæ»ý£¨Óú¬aµÄʽ×Ó±íʾ£©
¾«Ó¢¼Ò½ÌÍø
·ÖÎö£º£¨1£©¸ù¾Ýa¡¢b¡¢cµÄÖµ£¬¿ÉÈ·¶¨Å×ÎïÏߵĽâÎöʽ£¬½ø¶ø¿ÉÇó³öCµãµÄ×ø±ê£»¸ù¾ÝtµÄÖµ£¬¿ÉÈ·¶¨Ö±ÏßL2µÄ½âÎöʽ£¬ÁªÁ¢Å×ÎïÏߵĽâÎöʽ¼´¿ÉµÃµ½A¡¢BµÄ×ø±ê£»¸ù¾ÝA¡¢B¡¢CÈýµãµÄ×ø±ê£¬¿ÉÇó³öÖ±ÏßAC¡¢BCµÄбÂÊ£¬´Ëʱ·¢ÏÖÁ½ÌõÖ±ÏßµÄбÂʵij˻ýΪ-1£¬ËùÒÔËüÃÇ»¥Ïà´¹Ö±£¬ÓÉ´Ë¿ÉÅж¨¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ»
£¨2£©¸ù¾ÝÅ×ÎïÏߵĽâÎöʽ¿ÉÖª£ºCµã×ø±êΪ£¨0£¬c£©£¬ÄÇôֱÏßL2µÄ½âÎöʽΪc+t£¬ÁªÁ¢Å×ÎïÏߵĽâÎöʽ¿ÉµÃµ½¹ØÓÚxµÄ·½³Ì£¬ÄÇô·½³ÌµÄÁ½¸ù¼´ÎªA¡¢BµÄºá×ø±ê£¬¿ÉÓɸùÓëϵÊýµÄ¹ØϵÇó³öABµÄ³¤£»ÉèÅ×ÎïÏߵĶԳÆÖáÓëL2µÄ½»µãΪF£¬¸ù¾ÝÅ×ÎïÏߵĶԳÆÐÔÖªAF=BF¼´FÊÇABÖе㣬Èô¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ¬ÔòAB=2CF£¬Óɴ˿ɵõ½CFµÄ±í´ïʽ£»ÉèL2ÓëyÖáµÄ½»µãΪE£¬ÄÇôCEµÄ³¤¼´ÎªE¡¢C×Ý×ø±ê²îµÄ¾ø¶ÔÖµ£¬EFµÄ³¤¼´ÎªÅ×ÎïÏ߶ԳÆÖá·½³ÌµÄ¾ø¶ÔÖµ£¬ÔÚRt¡÷CEFÖУ¬¸ù¾Ý¹´¹É¶¨Àí¼´¿ÉÇó³ötµÄÖµ£»
£¨3£©ÈôA¡äÇ¡ºÃÔÚÅ×ÎïÏߵĶԳÆÖáÉÏ£¬ÄÇôAB=2AA¡ä£»¶øA¡¢A¡ä¹ØÓÚyÖá¶Ô³Æ£¬ÄÇôAA¡ä=2A¡äE£¬¼´AB=2A¡äB=4A¡äE£»¸ù¾ÝÅ×ÎïÏߵĶԳÆÐÔÒ×ÖªCD=2A¡äE£¬ÄÇôA¡äBƽÐÐÇÒÏàµÈÓÚCD£¬¼´ËıßÐÎA¡äBDCÊÇƽÐÐËıßÐΣ¬ÓÉAB=4EA¡ä¿ÉÇó³öbµÄÖµ£¬¶øCD=A¡äB=-
b
a
£¬Æ½ÐÐËıßÐεĸßΪt£¬¸ù¾ÝƽÐÐËıßÐεÄÃæ»ý¼ÆËã·½·¨¼´¿ÉÇó³öËıßÐÎA¡äCDBµÄÃæ»ý£®
½â´ð£º½â£º£¨1£©µ±a=
1
2
£¬b=-
3
2
£¬c=1£¬
y=
1
2
x2-
3
2
x+1£¬
µ±t=2ʱ£¬
A¡¢B×Ý×ø±êΪ3£¬
Áîy=3£¬½âµÃx=-1»òx=4£¬
¹ÊA£¨-1£¬3£©£¬B£¨4£¬3£©£¬C£¨0£¬1£©£¬
AC2=12+£¨3-1£©2=5£¬BC2=42+£¨3-1£©2=20£¬AB2=£¨4+1£©2=25£¬
¡àAC2+BC2=AB2£¬
¡àACÓëBC´¹Ö±£¬
¹Ê¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ®

£¨2£©ÉèAB½»yÖáÓÚE£¬½»Å×ÎïÏ߶ԳÆÖáÓÚM£¬ÔòMΪABÖе㣬Á¬½ÓCM£»
ÓÉ·½³Ìc+t=ax2+bx+cµÃax2+bx-t=0£¬
Éè·½³ÌµÄÁ½¸ùΪx1¡¢x2£¬ÓɸùÓëϵÊýµÄ¹ØϵµÃ£º¾«Ó¢¼Ò½ÌÍø
x1+x2=-
b
a
£¬x1x2=-
t
a
£»
AB=|x1-x2|=
(x1+x2)2-4x1x2
=
b2+4at
a
£»
¡àCM=
1
2
AB=
b2+4at
2a
£»
ÔÚRt¡÷CEMÖУ¬CE=t£¬EM=|-
b
2a
|£»
¡àt2+|-
b
2a
|2=£¨
b2+4at
2a
£©2£¬¼´4a2t2-4at=0
½âµÃt=
1
a
£»

£¨3£©ÒòΪµãA¹ØÓÚyÖáµÄ¶Ô³ÆµãA¡äÇ¡ºÃÔÚÅ×ÎïÏßFµÄ¶Ô³ÆÖáÉÏ£¬
¾«Ó¢¼Ò½ÌÍø¡à¶Ô³ÆÖáÔÚyÖáµÄÓҲ࣬a£¬bÒìºÅ£¬
¡àb£¼0£¬ÇÒAB=4EA¡ä£»
¡à
b2+4at
a
=-
b
2a
¡Á4£¬
½âµÃb=-
2
3
3
£»
¡àCD=A¡äB=-
b
a
£¬
¡àËıßÐÎA¡äCDBÊÇƽÐÐËıßÐΣ¬
ÔòËüµÄÃæ»ýΪ-
b
a
¡Át=
2
3
3a2
£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁ˺¯ÊýͼÏó½»µã×ø±êµÄÇ󷨡¢Ö±½ÇÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Å×ÎïÏߵĶԳÆÐÔ¡¢¹´¹É¶¨ÀíÒÔ¼°Æ½ÐÐËıßÐεÄÅж¨ºÍÐÔÖʵÈÖØҪ֪ʶµã£¬×ÛºÏÐÔÇ¿£¬ÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

26¡¢ÒÑÖª£ºÈçͼ£¬Å×ÎïÏßC1£¬C2¹ØÓÚxÖá¶Ô³Æ£»Å×ÎïÏßC1£¬C3¹ØÓÚyÖá¶Ô³Æ£®Å×ÎïÏßC1£¬C2£¬C3ÓëxÖáÏཻÓÚA¡¢B¡¢C¡¢DËĵ㣻ÓëyÏཻÓÚE¡¢FÁ½µã£»H¡¢G¡¢M·Ö±ðΪÅ×ÎïÏßC1£¬C2£¬C3µÄ¶¥µã£®HN´¹Ö±ÓÚxÖᣬ´¹×ãΪN£¬ÇÒ|OE|£¾|HN|£¬|AB|¡Ù|HG|
£¨1£©A¡¢B¡¢C¡¢D¡¢E¡¢F¡¢G¡¢H¡¢M9¸öµãÖУ¬Ëĸöµã¿ÉÒÔÁ¬½Ó³ÉÒ»¸öËıßÐΣ¬ÇëÄãÓÃ×Öĸд³öÏÂÁÐÌØÊâËıßÐΣºÁâÐÎ
AHBG
£»µÈÑüÌÝÐÎ
HGEF
£»Æ½ÐÐËıßÐÎ
EGFM
£»ÌÝÐÎ
DMHC
£»£¨Ã¿ÖÖÌØÊâËıßÐÎÖ»ÄÜдһ¸ö£¬Ð´´í¡¢¶àд¼Ç0·Ö£©
£¨2£©Ö¤Ã÷ÆäÖÐÈÎÒâÒ»¸öÌØÊâËıßÐΣ»
£¨3£©Ð´³öÄãÖ¤Ã÷µÄÌØÊâËıßÐεÄÐÔÖÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬Å×ÎïÏß½»xÖáÓÚµãA£¨-2£¬0£©£¬µãB£¨4£¬0£©£¬½»yÖáÓÚµãC£¨0£¬4£©£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£¬²¢Ð´³ö¶¥µãDµÄ×ø±ê£»
£¨2£©ÈôÖ±Ïßy=x½»Å×ÎïÏßÓÚM£¬NÁ½µã£¬½»Å×ÎïÏߵĶԳÆÖáÓÚµãE£¬Á¬½ÓBC£¬EB£¬EC£®ÊÔÅжϡ÷EBCµÄÐÎ×´£¬²¢¼ÓÒÔÖ¤Ã÷£»
£¨3£©ÉèPΪֱÏßMNÉϵĶ¯µã£¬¹ýP×÷PF¡ÎED½»Ö±ÏßMNÉÏ·½µÄÅ×ÎïÏßÓÚµãF£®ÎÊ£ºÔÚÖ±ÏßMNÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃÒÔP£¬E£¬D£¬FΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÇó³öµãP¼°ÏàÓ¦µÄµãFµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Å×ÎïÏߵĶ¥µã×ø±êΪM£¨1£¬4£©£¬ÓëxÖáµÄÒ»¸ö½»µãÊÇA£¨-1£¬0£©£¬ÓëyÖá½»ÓÚµãB£¬Ö±Ïßx=1½»xÖáÓÚµãN£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ¼°µãBµÄ×ø±ê£»
£¨2£©Çó¾­¹ýB¡¢MÁ½µãµÄÖ±ÏߵĽâÎöʽ£¬²¢Çó³ö´ËÖ±ÏßÓëxÖáµÄ½»µãCµÄ×ø±ê£»
£¨3£©ÈôµãPÔÚÅ×ÎïÏߵĶԳÆÖáx=1ÉÏÔ˶¯£¬ÇëÄã̽Ë÷£ºÔÚxÖáÉÏ·½ÊÇ·ñ´æÔÚÕâÑùµÄPµã£¬Ê¹¾«Ó¢¼Ò½ÌÍøÒÔPΪԲÐĵÄÔ²¾­¹ýµãA£¬²¢ÇÒÓëÖ±ÏßBMÏàÇУ¿Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Å×ÎïÏßy=ax2+bx+c½»xÖáÓÚµãA£¨-3£¬0£©£¬µãB£¨1£¬0£©£¬½»yÖáÓÚµãE£¨0£¬-3£©¾«Ó¢¼Ò½ÌÍø£®µãCÊǵãA¹ØÓÚµãBµÄ¶Ô³Æµã£¬µãFÊÇÏ߶ÎBCµÄÖе㣬ֱÏßl¹ýµãFÇÒÓëyÖáƽÐУ®Ö±Ïßy=-x+m¹ýµãC£¬½»yÖáÓÚDµã£®
£¨1£©ÇóÅ×ÎïÏߵĺ¯Êý±í´ïʽ£»
£¨2£©µãKΪÏ߶ÎABÉÏÒ»¶¯µã£¬¹ýµãK×÷xÖáµÄ´¹ÏßÓëÖ±ÏßCD½»ÓÚµãH£¬ÓëÅ×ÎïÏß½»ÓÚµãG£¬ÇóÏ߶ÎHG³¤¶ÈµÄ×î´óÖµ£»
£¨3£©ÔÚÖ±ÏßlÉÏÈ¡µãM£¬ÔÚÅ×ÎïÏßÉÏÈ¡µãN£¬Ê¹ÒÔµãA£¬C£¬M£¬NΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¬ÇóµãNµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬Å×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©ÓëxÖáÁ½½»µãÊÇA£¨-1£¬0£©£¬B£¨3£¬0£©£¬ÔòÈçͼ¿ÉÖªy£¼0ʱ£¬xµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A¡¢-1£¼x£¼3B¡¢3£¼x£¼-1C¡¢x£¾-1»òx£¼3D¡¢x£¼-1»òx£¾3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸