精英家教网 > 初中数学 > 题目详情
12.已知:如图,AB∥CD,AD∥BC,E、F分别在AB、CD上,DF=BE,AC与EF相交于点M,求证:AM=CM.

分析 首先证明△ACD≌△CAB,推出AB=CD,由DF=EB,推出FC=AE,再证明△CFM≌△AEM即可.

解答 证明:∵AB∥CD,AD∥BC,
∴∠DAC=∠BCA,∠DCA=∠BAC,
在△ACD和△CAB中,
$\left\{\begin{array}{l}{∠DAC=∠ACB}\\{AC=CA}\\{∠DCA=∠BAC}\end{array}\right.$,
∴△ACD≌△CAB,
∴AB=CD,
∵DF=EB,
∴FC=AE,
 在△CFM和△AEM中,
$\left\{\begin{array}{l}{∠FMC=∠AME}\\{∠FCA=∠EAM}\\{CF=AE}\end{array}\right.$,
∴△CFM≌△AEM,
∴CM=AM.

点评 本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是用了两次全等三角形的证明,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.把下列各数填在相应的大括号中
5%,0,25,-9,2π,$\frac{22}{7}$,1.213,$-\frac{3}{4}$,3.121121112….
(1)正数集合:{5%,25,2π,$\frac{22}{7}$,1.213,3.121121112… …};
(2)正分数集合:{5%,$\frac{22}{7}$,1.213…};
(3)非负整数集合:{0,25…};
(4)无理数集合:{2π,3.121121112……}.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.实数-$\sqrt{4}$,0,$\frac{22}{7}$,$\root{3}{-125}$,0.1010010001…(两个1之间依次多一个0),$\frac{49}{121}$,$\frac{π}{2}$中,无理数有0.1010010001…(两个1之间依次多一个0),$\frac{π}{2}$,整数有-$\sqrt{4}$,0,$\root{3}{-125}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.先化简,再求值:
(1)已知a+b=5,ab=-6,求代数式 $\frac{1}{5}(a+b)-\frac{ab+1}{a+b}$的值.
(2)3x2y-[2x2-(x2y-3x2y)-4xy2],其中|x|=2,y=$\frac{1}{2}$,且xy<0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.阅读下列材料,回答问题.
对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式法将它分解成(a+x)2的形式.但是对于二次三项式x2+2ax-3a2,就不能直接分解.小明说,可以在二次三项式中先加上一项a2,使其成为完全平方式,再减去a2这项,使整个式子的值不变,于是有:x2+2ax-3a2=x2+2ax+a2-a2-3a2=(x+a)2-4a2=[(x+a)+2a][(x+a)-2a]=(x+3a) (x-a);小红说,因为因式分解与整式乘法是互逆的关系,那么逆用乘法公式(x+a) (x+b)=x2+(a+b)x+ab即可将其分解因式,而且也很简单.
如:(l)x2+5x+6=x2+(3+2)x+3×2=(x+3)(x+2);
( 2)x2-5x-6=x2+(-6+1 )x+(-6)×l=(x-6)(x+l).你认为他们的说法正确吗?
请你利用上述正确的方法,把下列多项式分解因式:
(1)x2-8x+7;
(2)x2+7x-18;
(3)x4+4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,点C在BD上,请分别根据已知条件进行推理,并在括号内注明推理根据.
(1)∵∠B=∠3(已知),
∴AB∥CE(同位角相等,两直线平行)
(2)∵∠1=∠D(已知),
∴AC∥DE(同位角相等,两直线平行)
(3)∵∠2=∠A(已知),
∴AB∥CE(内错角相等,两直线平行)
(4)∵∠B+∠BCE=180°(已知),
∴AB∥CE(同旁内角互补,两直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知多项式A=(x+5)2+(2-x)(3+x)-4.
(1)请化简多项式A;
(2)若(x+3)2=16,且x>0,试求A的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.将式子a2+2a(a+1)+(a+1)2分解因式的结果等于(2a+1)2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.计算:($\sqrt{5}$+$\sqrt{3}$)($\sqrt{5}$-$\sqrt{3}$)=2;$\sqrt{7}$÷$\sqrt{\frac{1}{7}}$=7;±$\sqrt{9}$=±3.

查看答案和解析>>

同步练习册答案