精英家教网 > 初中数学 > 题目详情
15.半径为4的圆内接正三角形、正方形的边长之积是16$\sqrt{6}$.

分析 根据正多边形的中心角的求法公式分别求出中心角,根据正弦的定义求出边长,计算即可.

解答 解:正三角形的中心角是$\frac{360°}{3}$=120°,
则边长是:2×4sin60°=4$\sqrt{3}$,
正方形的中心角=$\frac{360°}{4}$=90°,
∴正方形的边长是:$\sqrt{{4}^{2}{+4}^{2}}$=4$\sqrt{2}$,
∴正三角形、正方形的边长之积是4$\sqrt{3}$×4$\sqrt{2}$=16$\sqrt{6}$,
故答案为:16$\sqrt{6}$.

点评 本题考查的是正多边形和圆,掌握正多边形的中心角的求法、掌握锐角三角函数的定义、熟记特殊角的三角函数值是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.下列命题中,真命题有(  )
①两条平行直线被第三条直线所截,内错角相等;②两边分别相等且其中一组等边的对角也相等的两个三角形全等;③三角形对的一个外角大于任何一个内角;④如果a2=b2,那么a=b.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在△ABC中,∠ABE=2∠C,AD是∠BAC的平分线,BE⊥AD,垂足为E
(1)若∠C=30°,求证:AB=2BE.
(2)若∠C≠30°,求证:BE=$\frac{1}{2}$(AC-AB).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在△ABC中,∠ACB=90°,CE是AB边上的高,AF平分∠CAB交CE于点F,过点F作FD∥CB交AB于点D.求证:AC=AD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).
(1)如图①,∠B=∠C,BD=CE,AB=DC.
①求证:△ADE为等腰三角形.
②若∠B=60°,求证:△ADE为等边三角形.
(2)如图②,射线AM与BN,MA⊥AB,NB⊥AB,点P是AB上一点,在射线AM与BN上分别作点C、点D满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,设△ABC的面积为S,周长为l.且a+b-c=m,①填表:②观察下表猜想:m×l=4S.(用含s的代数式表示)③证明②中的结论.
三边a、b、cml×mS
3、4、5224 
5、12、134120 30 
8、15、17624060 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.在△ABC中,若|sinA-$\frac{\sqrt{3}}{2}$|+($\frac{\sqrt{3}}{2}$-cosB)2=0,则∠C=90度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.先阅读下列解题过程,然后解答问题(1)、(2)
解方程:|x+3|=2.
解:当x+3≥0时,原方程可化为:x+3=2,解得x=-1;
当x+3<0时,原方程可化为:x+3=-2,解得x=-5.
所以原方程的解是x=-1,x=-5.
(1)解方程:|3x-1|-5=0;
(2)探究:当b为何值时,方程|x-2|=b+1 ①无解;②只有一个解;③有两个解.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,已知B1(1,y1),B2(2,y2)B3(3,y3)…在直线y=2x+3上,在x轴上取点A1,使OA1=a(0<a<1);作等腰△A1B1A2面积为S1,等腰△A2B2A3面积为S2…;求S2017-S2016=4037-8072a.

查看答案和解析>>

同步练习册答案