【题目】如图,一副三角板的三个内角分别是,,和,,,按如图所示叠放在一起(点在同一直线上),若固定,将绕着公共顶点顺时针旋转度(),当边与的某一边平行时,相应的旋转角的值为_______.
【答案】.
【解析】
分DE∥AB,DE∥BC,DE∥AC,三种情况进行讨论,利用平行线的判定与性质进行证明即可.
解:①如图,当∠a=45°时,DE∥AB,
∵∠D=45°,
∴∠a=∠D,
∴DE∥AB;
②如图,当∠a=75°时,DE∥BC,
∵∠ABC=30°,∠DBE=90°,
∴∠CBE=∠a﹣∠ABC+∠DBE=75°﹣30°+90°=135°,
∴∠CBE+∠E=135°+45°=180°,
∴DE∥BC;
③如图,当∠a=165°时,DE∥AC,
过B点作BF∥AC,则∠CBF=∠C=90°,
∴∠DBF=∠a﹣∠CBF﹣∠ABC=165°﹣90°﹣30°=45°,
∴∠DBF=∠D,
∴DE∥BF,
∴DE∥AC;
综上,当∠a=时,边与的某一边平行.
故答案为: .
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°.
(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)
①作AC的垂直平分线,交AB于点O,交AC于点D;
②以O为圆心,OA为半径作圆,交OD的延长线于点E.
(2)在(1)所作的图形中,解答下列问题.
①点B与⊙O的位置关系是__;(直接写出答案)
②若DE=2,AC=8,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,若满足下列条件,则一定不是直角三角形的是( )
A.∠A=∠B+∠CB.∠A=∠C-∠B
C.一个外角等于与它相邻的内角D.∠A∶∠B∶∠C=1∶3∶5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以四边形ABCD的边AB,AD为边分别向外侧作等边△ABF和等边△ADE,连接EB,FD,交点为G.
(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是 ;
(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;
(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图(1),在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.
①求证:BE+CF>EF.
②若∠A=90°,探索线段BE、CF、EF之间的数量关系,并加以证明;
(2)如图(2),在四边形ABCD中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知菱形的边长为12,, 点、分别是边、上的动点(不与端点重合),且.
(1)求证: 是等边三角形;
(2)点、在运动过程中,四边形的面积是否变化,如果变化,请说明理由;如果不变,请求出面积;
(3)如图2,连接分别与边、交于、,当时,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO对称,连接DB′,AD.
(1)求证:△DOB∽△ACB;
(2)若AD平分∠CAB,求线段BD的长;
(3)当△AB′D为等腰三角形时,求线段BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,添加下列条件后,仍不能判断△ABC≌△DEF的是( )
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com