精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD的面积为1cm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B…;依此类推,则平行四边形AO2016C2017B的面积为_____

【答案】

【解析】

矩形ABCD的面积=AB×AD=1,过点OAB作垂线,垂足为E,平行四边形AOC1B的面积=AB×OE,根据矩形的性质,OE=AD,即平行四边形AOC1B的面积=AB×AD=,过点O1AB作垂线,垂足为F,根据平行四边形的性质,O1F=OE=AD,即平行四边形AO1C2B面积=AB×AD=,依此类推,即可得到平行四边形AO2016C2017B的面积.

解:过点OAB作垂线,垂足为E,过点O1AB作垂线,垂足为F,如下图所示:

∵∠DAB=∠OEB,

∴OE∥DA,

∵O为矩形ABCD的对角线交点,

∴OB=OD

∴OE=AD,

矩形ABCD的面积=AB×AD=1,

平行四边形AOC1B的面积=AB×OE=AB×AD=

同理,根据平行四边形的性质,

O1F=OE=AD,

平行四边形AO1C2B面积=AB×AD=

依此类推:

平行四边形AO2016C2017B的面积=AB× AD=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,,点ECD上一动点,经过A、C、E三点的BC于点F.

(操作与发现)

E运动到处,利用直尺与规作出点E与点F;保留作图痕迹

的条件下,证明:

(探索与证明)

E运动到任何一个位置时,求证:

(延伸与应用)

E在运动的过程中求EF的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=3,tanA=.点D,E分别是边BC,AC上的点,且∠EDC=∠A.将△ABC沿DE所在直线对折,若点C恰好落在边AB上,则DE的长为___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中有三个点A(2,3),B(1,1),C(4,2)

(1)连接ABC三点,请在如图中作出△ABC关于x轴对称的图形△ABC’并直接写出各对称点的坐标;(2)求△ABC的面积;(3)若Mxy)是△ABC内部任意一点,请直接写出点M在△ABC’内部的对应点M1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边ABD与等边ACE,连接BECDBE的延长线与CD交于点F,下列结论:(1BE=CD ;(2AF平分∠EAC 3)∠BFD=60°;(4AF+FD=BF 其中正确的有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018年我市体育中考总分60分,其中男生1000米跑为必选项目,再在立定跳远、跳绳、实心球掷远、篮球运球和足球运球中选择两项;女生800米跑为必选项目,再在立定跳远、跳绳、仰卧起坐、篮球运球和足球运球中选择两项某校对得分超过40分的20位学生的成绩m进行统计,结果如频数分布表所示:

a的值;

若用扇形图来描述,求分数在内所对应的扇形图的圆心角的大小;

若男生小明在刚开始训练时在选考项目随机选择两项进行训练,试用列举法求小明选择跳绳篮球运球的概率提示:可以用字母表示各个项目

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市创建绿色发展模范城市,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用生活污水集中处理(下称甲方案)和沿江工厂转型升级(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.

(1)求n的值;

(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;

(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.

下面有三个推断:

①当投掷次数是500时,计算机记录钉尖向上的次数是308,所以钉尖向上的概率是0.616;

②随着实验次数的增加,钉尖向上的频率总在0.618附近摆动,显示出一定的稳定性,可以估计钉尖向上的概率是0.618;

③若再次用计算机模拟实验,则当投掷次数为1000时,钉尖向上的概率一定是0.620.

其中合理的是(

A. B. C. ①② D. ①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB,CD都是的直径,连接DB,过点C的切线交DB的延长线于点E.

如图1,求证:

如图2,过点AEC的延长线于点F,过点D,垂足为点G,求证:

如图3,在的条件下,当时,在外取一点H,连接CH、DH分别交于点M、N,且,点PHD的延长线上,连接PO并延长交CM于点Q,若,求线段HM的长.

查看答案和解析>>

同步练习册答案