精英家教网 > 初中数学 > 题目详情
如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数为
 
考点:多边形内角与外角
专题:
分析:连KF,GI,根据n边形的内角和定理得到7边形ABCDEFK的内角和=(7-2)×180°=900°,则∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠1+∠2)=900°,由三角形内角和定理可得到∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,则∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)+∠5+∠6+∠H=900°+180°,即可得到∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数.
解答:解:连KF,GI,如图,
∵7边形ABCDEFK的内角和=(7-2)×180°=900°,
∴∠A+∠B+∠C+∠D+∠E+∠F+∠K=900°-(∠1+∠2),
即∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠1+∠2)=900°,
∵∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,
∴∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)=900°,
∴∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)+∠5+∠6+∠H=900°+180°,
∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K=1080°.
故∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数为1080°.
故答案为:1080°.
点评:本题考查了n边形的内角和定理:n边形的内角和为(n-2)×180°(n≥3的整数).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,AB是⊙O的直径,弦CD⊥AB,若∠C=30°,CD=2
3
,则S阴影=(  )
A、π
B、2π
C、
2
3
π
D、
2
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

某校九年级数学小组在课外活动中,研究了同一坐标系中两个反比例函数y1=
k1
x
与y2=
k2
x
(k2>k1>0)在第一象限图象的性质,经历了如下探究过程:
操作猜想:
(1)如图①,当k1=2,k2=6时,在y轴的正方向上取一点A作x轴的平行线交y1于点B,交y2于点C.
当OA=1时,AB=
 
,BC=
 
BC
AB
=
 

当OA=3时,AB=
 
,BC=
 
BC
AB
=
 

当OA=a时,猜想
BC
AB
=
 

数学思考:
(2)在y轴的正方形上任意取点A作x轴的平行线,交y1于点B、交y2于点C,请用含k1、k2的式子表示
BC
AB
的值,并利用图②加以证明.
推广应用:
(3)如图③,若k2=12,
BC
AB
=
1
2
,在y轴的正方向上分别取点A、D(OD>OA)作x轴的平行线,交y1于点B、E,交y2于点C、F,是否存在四边形ADFB是正方形?如果存在,求OA的长和点B的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,下面表述不正确的是(  )
A、∠1可表示为∠DAC
B、∠2可表示为∠BAC
C、∠BAD表示的角是∠1+∠2
D、∠BAD可表示为∠A

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AC⊥BD,AC=DC,BC=EC,连接DE并延长交AB于F,求证:DF⊥AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,△ABC中,AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.
(1)求证:PE+PF=CH.
(2)如图②,P为BC延长线上的点时,其他条件不变,PE、PF、CH又有怎样的数量关系?请写出你的猜想,并加以证明.
(3)填空:若∠A=30°,△ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF.当PF=3时,则AB边上的高CH=
 
,点P到AB边的距离PE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,把△ABC的中线AD延长至E,使得DE=AD,连接EB,EC.求证:四边形ABEC是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将直角三角形余料截出一个矩形PMCN,∠C=90°,AC=40cm,BC=30cm,点P、M、N分别在AB、AC、BC上,设CN=x.
(1)试用含x的代数式表示PN;
(2)设矩形PMCN的面积为y(cm2),当x为何值时,y的值最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

某公司生产一种环保产品,需要添加一种新型原料,若每件产品的利润与新型原料价格成一次函数关系,且每件产品的利润y(元)与新型原料的价格x(元/千克)的函数图象如图:
(1)当新型原料的价格为600元/千克时,每件产品的利润是多少?
(2)新型原料是一种稀少材料,为了珍惜资源,政府部门规定:新型原料每天使用量m(千克)与价格x(元/千克)的函数关系为x=10m+500,且m千克新型原料可生产10m件产品.那么生产300件这种产品,一共可得利润是多少?
(3)受生产能力的限制,该公司每天生产这种产品不超过450件,那么在(2)的条件下,该公司每天应生产多少件产品才能获得最大利润?最大利润是多少?

查看答案和解析>>

同步练习册答案