精英家教网 > 初中数学 > 题目详情
如图,△ABC的三边满足关系BC=
1
2
(AB+AC),O、I分别为△ABC的外心、内心,∠BAC的外角精英家教网平分线交⊙O于E,AI的延长线交⊙O于D,DE交BC于H,
求证:(1)AI=BD;
(2)OI=
1
2
AE.
分析:(1)作IG⊥AB于G点,连BI,BD,则AG=
1
2
(AB+AC-BC),而BC=
1
2
(AB+AC),可得到AG=
1
2
BC,根据题意得∠EAD=90°,得到ED为⊙O的直径,ED垂直平分BC,因此AG=BH,从而得到Rt△AGI≌Rt△BHD,即有AI=BD;
(2)由∠BID=∠BAI+∠ABI,而∠BAI=∠DBC,∠ABI=∠CBI,即可得到∠DBI=∠BID,则ID=DB,得到AI=ID,由此得到OI为三角形AED的中位线,利用中位线的性质即可得到结论.
解答:精英家教网证明:(1)作IG⊥AB于G点,连BI,BD,如图,
∴AG=
1
2
(AB+AC-BC),
而BC=
1
2
(AB+AC),
∴AG=
1
2
BC,
又∵AD平分∠BAC,AE平分∠BAC的外角,
∴∠EAD=90°,
∴O点在DE上,即ED为⊙O的直径,
而BD弧=DC弧,
∴ED垂直平分BC,即BH=
1
2
BC,
∴AG=BH,
而∠BAD=∠DAC=∠DBC,
∴Rt△AGI≌Rt△BHD,
∴AI=BD;

(2)∵∠BID=∠BAI+∠ABI,
而∠BAI=∠DBC,∠ABI=∠CBI,
∴∠DBI=∠BID,
∴ID=DB,
而AI=BD,
∴AI=ID,
∴OI为三角形AED的中位线,
∴OI=
1
2
AE.
点评:本题考查了三角形内心的性质和圆周角定理及推论.也考查了等腰三角形的判定以及三角形中位线的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC的三边分别切⊙O于D,E,F,若∠A=40°,则∠DEF=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•邢台一模)(1)如图,RT△ABC的三边长分别为3、4、5,求△ABC内切圆的半径;
(2)如图,△ABC的三边长分别为a、b、c,面积为S,其内切圆的半径为r,试用a、b、c和S表示r;
(3)如图,四边形ABCD的周长为l,面积为S,其内切圆的半径为r,试用l、s表示r;
(4)若一个n变形的周长为l,面积为S,其内切圆的半径为r,直接写出r、l和S的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的三边AB、BC、AC的长分别为4,6,8,其三条角平分线将△ABC分成三个三角形,则S△OAB:S△OBC:S△OAC=
2:3:4
2:3:4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的三边长分别为AC=12,AB=15,BC=9.若将△ABC沿线段AD折叠,点C正好落在AB边上的点E处.求线段CD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的三边长分别是6cm、8cm、10cm,现在分别取三边的中点E、F、G,顺次连接E、F、G,则△EFG的面积为
6 cm2
6 cm2

查看答案和解析>>

同步练习册答案