精英家教网 > 初中数学 > 题目详情
15.用因式分解法解下列方程:
(1)5x(x-1)=2x-2;
(2)y2-5y+6=0.

分析 (1)先变形得到5x(x-1)-2(x-1)=0,然后利用因式分解法解方程;
(2)利用因式分解法解方程.

解答 解:(1)5x(x-1)-2(x-1)=0,
(x-1)(5x-2)=0,
(x-1)(5x-2)=0,
x-1=0或5x-2=0,
所以x1=1,x2=$\frac{2}{5}$;
(2)(y-2)(y-3)=0,
y-2=0或y-3=0,
所以y1=2,y2=3.

点评 本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,则∠DAB与∠BCD的数量关系是互补.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
(Ⅰ)△ABC的面积为12;
(Ⅱ)请在如图所示的网格中,用无刻度的直尺和圆规画出与△ABC的面积相等的正方形的一条边,并简要说明画法(不要求证明,保留作图痕迹).画射线OK,再在OK上截取OM=3,作直角三角形OMN,是另一直角边NM=1,连接ON,.则NO长为$\sqrt{10}$,利用圆规以O为圆心,ON长为半径,在OK上截取OL=$\sqrt{10}$,再以OL为直角边,L为直角顶点再画直角三角形OLE,则OE=$\sqrt{11}$,再利用圆规以O为圆心,OE长为半径,在OK上截取OH=OE,再同法作直角三角形OHF,则OF=2$\sqrt{3}$,再利用圆规以O为圆心,OF长为半径,在OK上截取OG=OF,OF即为所求.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知,如图,正方形的边长为a,分别以对角顶点为圆心,边长为半径画弧,试求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知A(o,a),B(b,o),C(3,c)且|a-2|+(b-3)2+$\sqrt{c-4}$=0
(1)求a,b,c的值
(2)若第二象限内有一点P(m,$\frac{1}{3}$),请用含m的式子表示四边形ABOP的面积
(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积为△ABC面积的2倍?若存在,求出点P的坐标,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知抛物线y=-2x2-4x+6
(1)求抛物线与坐标轴交点的坐标.
(2)抛物线上是否存在点P,使点P到两坐标轴的距离相等?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知二次函数y=ax2+bx+c的图象经过点A(x1,0),B(x2,0),C(2,m),且0<x1<x2<2.
(1)求证:m>0;
(2)若b≥1,求证:m<1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.某展厅要用相同的正方体木块搭成一个三视图如下的展台,则搭成此展台共需这样的正方体(  )
A.5个B.4个C.6个D.3个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,点B在点A北偏东35度的方向,点C在点B北偏西55度的方向,且BC=10m,问点C到直线AB的距离是多少?

查看答案和解析>>

同步练习册答案