【题目】如图(1),公路上有A、B、C三个车站,一辆汽车从A站以速度v1匀速驶向B站,到达B站后不停留,以速度v2匀速驶向C站,汽车行驶路程y(千米)与行驶时间x(小时)之间的函数图象如图(2)所示.
(1)当汽车在A、B两站之间匀速行驶时,求y与x之间的函数关系式及自变量的取值范围;
(2)求出v2的值;
(3)若汽车在某一段路程内刚好用50分钟行驶了90千米,求这段路程开始时x的值.
【答案】(1)y=100x,(0<x<3);(2)120千米/小时;(3)这段路程开始时x的值是2.5小时.
【解析】试题分析:(1)根据函数图象设出一次函数解析式,运用待定系数法求出解析式即可;
(2)根据距离÷时间=速度计算;
(3)设汽车在A、B两站之间匀速行驶x小时,根据题意列出方程,解方程即可.
试题解析:(1)根据图象可设汽车在A、B两站之间匀速行驶时,y与x之间的函数关系式为y=kx,
∵图象经过(1,100),
∴k=100,
∴y与x之间的函数关系式为y=100x,(0<x<3);
(2)当y=300时,x=3,
4﹣3=1小时,420﹣300=120千米,
∴v2=120千米/小时;
(3)设汽车在A、B两站之间匀速行驶x小时,则在汽车在B、C两站之间匀速行驶(﹣x)小时,
由题意得,100x+120(﹣x)=90,
解得x=0.5,
3﹣0.5=2.5小时.
答:这段路程开始时x的值是2.5小时.
科目:初中数学 来源: 题型:
【题目】如图,O为坐标原点,点A(1,5)和点B(m,1)均在反比例函数y=图象上.
(1)求m,k的值;
(2)设直线AB与x轴交于点C,求△AOC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为的菱形ABCD纸片放置在平面直角坐标系中.已知∠ABO=45°.
(1)求出点B、C的坐标;
(2)设边AB沿y轴对折后的对应线段为AB′,求出点B′的坐标及线段CB′的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于点H,过点C作CD⊥AC,连接AD,点M为AC上一点,且AM=CD,连接BM交AH于点N,交AD于点E.
(1)若AB=3,AD=,求△BMC的面积;
(2)点E为AD的中点时,求证:AD=BN .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线,其中是常数,该抛物线的对称轴为直线.
()求该抛物线的函数解析式.
()把该抛物线沿轴向上平移多少个单位后,得到的抛物线与轴只有一个公共点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D,E分别在直角边AC,BC上,且∠DOE=90°,DE交OC于点P.则下列结论:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面积等于四边形CDOE面积的2倍;(4)OD=OE.其中正确的结论有( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,点D为边BC上一点,请回答下列问题:
(1)如图1,若∠DAC=∠B,△ABC的角平分线CE交AD于点F,试说明∠AEF=∠AFE;
(2)在(1)的条件下,如图2,△ABC的外角∠ACQ的角平分线CP交BA的延长线于点P,若∠P=26°,猜想∠CFD的度数,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G。
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线:和直线:,过点作轴,交直线于点A,若点P是x轴上的一个动点,过点P作平行于y轴的直线,分别与、交于点C、D,连接AD、BC.
直接写出线段______;
当P的坐标是时,求直线BC的解析式;
若的面积与的面积相等,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com