【题目】如图,在中,,,点D是AC的中点,直角的两边分别交AB、BC于点E、F,给出以下结论:①;②;③;④;⑤是等腰直角三角形. 当在内绕顶点D旋转时(点E不与点A、B重合),上述结论始终成立的有____________个.
【答案】4
【解析】
由ED垂直于FD,BD垂直于AC,利用同角的余角相等得到一对角相等,再由三角形ABC为等腰直角三角形得到BD=CD,且∠EBD=∠C=45°,利用ASA得到三角形BED与三角形CFD全等,利用全等三角形的对应边相等,对应角相等即可做出判断.
∵ED⊥FD,BD⊥AC,
∴∠BDE+∠BDF=90°,∠BDF+∠FDC=90°,
∴∠BDE=∠FDC,
∵B、E、D、F四点共圆,
∴∠BFE=∠BDE,
∴∠BFE=∠CDF,选项④正确;
∵△ABC为等腰直角三角形,BD⊥AC,
∴∠EBD=∠C=45°,BD=CD,
在△BED和△CFD中,
,
∴△BED≌△CFD(ASA),
∴BE=CF,
∴AE=BF,选项①正确;
DE=DF,
∴△DEF为等腰直角三角形,选项⑤正确;
∴S四边形BEDF=S△BED+S△BDF=S△CFD+S△BDF=S△BDC=S△ABC,选项②正确.
∵BD是定值,EF随DF的变化而变化,只有当DF⊥BC时,EF=BD,
∴③不正确,
∴上述结论中始终成立的有4个.
故答案为:4.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,OA为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,使得BF=EF,EF与AC交于点G.
(1)试判断直线EF与⊙O的位置关系,并说明理由;
(2)若OA=2,∠A=30°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有些数学题,表面上看起来无从下手,但根据图形的特点,可补全成为特殊的图形,然后根据特殊几何图形的性质去考虑,常常可以获得简捷解法.根据阅读,请解答问题:如图所示,已知△ABC的面积为16cm2,AD平分∠BAC,且AD⊥BD于点D,则△ADC的面积为___________cm2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目.为了解学生最喜爱哪一种项目,童威随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出)
(1)本次被调查的学生人数为 ,扇形统计图中“跑步”所对的圆心角为 度.
(2)补全条形统计图;
(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),在中,,,,若动点P从点A开始沿着的路径运动,且速度为每秒2cm,设点P运动的时间为t秒.
(1)当时,的面积是___________;
(2)如图(2)当t为何值时,AP平分;
(3)当t为何值时,为等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,DC=AE,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D.
(1)求证:AC=CB; (2)若AC=12 cm,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E, F在直线AC上,DF=BE, ∠AFD=∠CEB,下列条件中不能判断△ADF≌△CBE的是( )
A.∠D=∠BB.AD=CBC.AE=CFD.AD// BC
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com