17£®Àà±ÈƽÐÐËıßÐΣ¬ÎÒÃÇѧϰóÝÐΣ¬¶¨Ò壺Á½×éÁڱ߷ֱðÏàµÈµÄËıßÐνÐ×öóÝÐΣ®Èçͼ¢Ù£¬ÈôAD=CD£¬AB=CB£¬ÔòËıßÐÎABCDÊÇóÝÐΣ®
£¨1£©ÔÚͬһƽÃæÄÚ£¬¡÷ABCÓë¡÷ADE°´Èçͼ¢ÚËùʾ·ÅÖã¬ÆäÖСÏB=¡ÏD=90¡ã£¬AB=AD£¬BCÓëDEÏཻÓÚµãF£¬ÇëÄãÅжÏËıßÐÎABFDÊDz»ÊÇóÝÐΣ¬²¢ËµÃ÷ÀíÓÉ£®
£¨2£©ÇëÄã½áºÏͼ¢Ù£¬Ð´³öÒ»¸öóÝÐεÄÅж¨·½·¨£¨¶¨Òå³ýÍ⣩£®
ÔÚËıßÐÎABCDÖУ¬ÈôAD=CD£¬¡ÏADB=¡ÏCDB£¬ÔòËıßÐÎABCDÊÇóÝÐΣ®
£¨3£©Èçͼ¢Û£¬ÔڵȱßÈý½ÇÐÎOGHÖУ¬µãGµÄ×ø±êΪ£¨$\sqrt{3}$-1£¬0£©£¬ÔÚÖ±Ïßl£ºy=-xÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃÒÔO£¬G£¬H£¬PΪ¶¥µãµÄËıßÐÎΪóÝÐΣ¿Èô´æÔÚ£¬ÇëÖ±½Óд³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Á¬½ÓAF£¬Í¨¹ý¸ø¶¨µÄÌõ¼þ½áºÏÈ«µÈÖ±½ÇÈý½ÇÐεÄÅж¨¶¨Àí£¨HL£©¿ÉµÃ³öRt¡÷AFB¡ÕRt¡÷AFD£¬ÓÉ´ËÕÒ³öBF=DF£¬½áºÏóÝÐζ¨Òå¼´¿ÉµÃ³ö½áÂÛ£»
£¨2£©ÈôÒªËıßÐÎABCDÊÇóÝÐΣ¬Ö»ÐèÖ¤Ã÷¡÷ABD¡Õ¡÷CBD¼´¿É£®¸ù¾ÝÈ«µÈÈý½ÇÐεÄÅж¨¶¨Àí£¨SAS£©Ëæ±ãÑ¡È¡Ò»×éÌõ¼þ¡°µ±AD=CD£¬¡ÏADB=¡ÏCDB¡±À´Ö¤Ã÷£»
£¨3£©¹ýµãH×÷HP1¡ÍOGÓÚµãM½»Ö±Ïßy=-xÓÚµãP1µã£¬Á¬½ÓGP1£¬¹ýµãG×÷GP2¡ÍOHÓëN½»Ö±Ïßy=-xÓÚµãP2£¬Á¬½ÓHP2£¬ÓɵȱßÈý½ÇÐεÄÈýÏߺÏÒ»¿ÉµÃÖª¡°HMΪOGµÄ´¹Ö±Æ½·ÖÏߣ¬GNΪOHµÄ´¹Ö±Æ½·ÖÏß¡±£¬Óɴ˼´µÃ³ö¡°ËıßÐÎOHGP1ΪóÝÐΣ¬ËıßÐÎOGHP2ΪóÝÐΡ±£¬ÔÙ¸ù¾Ý¸ø¶¨Ìõ¼þÕÒ³öµãM¡¢N¡¢HµãµÄ×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨¼´¿ÉµÃ³öÖ±ÏßHMºÍÖ±ÏßGNµÄ½âÎöʽ£¬×îºó½áºÏÁ½Ö±ÏߵĽ»µã֪ʶÇó³öµãPµÄ×ø±ê£®

½â´ð ½â£º£¨1£©ËıßÐÎABFDÊÇóÝÐΣ®
ÀíÓÉ£ºÈçͼ¢Ú£¬Á¬½ÓAF£®

ÔÚRt¡÷AFBºÍRt¡÷AFDÖУ¬$\left\{\begin{array}{l}{AF=AF}\\{AB=AD}\end{array}\right.$£¬
¡àRt¡÷AFB¡ÕRt¡÷AFD£¨HL£©£¬
¡àBF=DF£¬
ÓÖ¡ßAB=AD£¬
¡àËıßÐÎABFDÊÇóÝÐΣ®
£¨2£©ÈôÒªËıßÐÎABCDÊÇóÝÐΣ¬Ö»Ðè¡÷ABD¡Õ¡÷CBD¼´¿É£®
µ±AD=CD£¬¡ÏADB=¡ÏCDBʱ£¬ÔÚ¡÷ABDºÍ¡÷CBDÖУ¬$\left\{\begin{array}{l}{AD=CD}\\{¡ÏADB=¡ÏCDB}\\{BD=BD}\end{array}\right.$£¬
¡à¡÷ABD¡Õ¡÷CBD£¨SAS£©£¬
¡àAB=CB£¬
¡àËıßÐÎABCDÊÇóÝÐΣ®
¹Ê´ð°¸Îª£ºAD=CD£¬¡ÏADB=¡ÏCDB£®
£¨3£©´æÔÚ£¬ÀíÓÉÈçÏ£º
¹ýµãH×÷HP1¡ÍOGÓÚµãM½»Ö±Ïßy=-xÓÚµãP1µã£¬Á¬½ÓGP1£¬¹ýµãG×÷GP2¡ÍOHÓëN½»Ö±Ïßy=-xÓÚµãP2£¬Á¬½ÓHP2£¬Èçͼ¢ÛËùʾ£®

¡ß¡÷OGHΪµÈ±ßÈý½ÇÐΣ¬
¡àHMΪOGµÄ´¹Ö±Æ½·ÖÏߣ¬GNΪOHµÄ´¹Ö±Æ½·ÖÏߣ¬ÇÒOG=GH=HO£¬
¡àP2O=P2H£¬P1O=P1G£¬
¡àËıßÐÎOHGP1ΪóÝÐΣ¬ËıßÐÎOGHP2ΪóÝÐΣ®
¡ß¡÷OGHΪµÈ±ßÈý½ÇÐΣ¬µãGµÄ×ø±êΪ£¨$\sqrt{3}$-1£¬0£©£¬
¡àµãHµÄ×ø±êΪ£¨$\frac{\sqrt{3}-1}{2}$£¬$\frac{3-\sqrt{3}}{2}$£©£¬µãMµÄ×ø±êΪ£¨$\frac{\sqrt{3}-1}{2}$£¬0£©£¬µãNµÄ×ø±êΪ£¨$\frac{\sqrt{3}-1}{4}$£¬$\frac{3-\sqrt{3}}{4}$£©£®
¢Ù¡ßH£¨$\frac{\sqrt{3}-1}{2}$£¬$\frac{3-\sqrt{3}}{2}$£©£¬M£¨$\frac{\sqrt{3}-1}{2}$£¬0£©£¬
¡àÖ±ÏßHMµÄ½âÎöʽΪx=$\frac{\sqrt{3}-1}{2}$£¬
ÁîÖ±Ïßy=-xÖеÄx=$\frac{\sqrt{3}-1}{2}$£¬Ôòy=-$\frac{\sqrt{3}-1}{2}$£®
¡àP1µÄ×ø±êΪ£¨$\frac{\sqrt{3}-1}{2}$£¬-$\frac{\sqrt{3}-1}{2}$£©£»
¢ÚÉèÖ±ÏßGNµÄ½âÎöʽΪy=kx+b£¬ÔòÓУ¬
$\left\{\begin{array}{l}{0=£¨\sqrt{3}-1£©k+b}\\{\frac{3-\sqrt{3}}{4}=\frac{\sqrt{3}-1}{4}k+b}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{k=-\frac{\sqrt{3}}{3}}\\{b=\frac{3-\sqrt{3}}{3}}\end{array}\right.$£¬
¡àÖ±ÏßGNµÄ½âÎöʽΪy=-$\frac{\sqrt{3}}{3}$x+$\frac{3-\sqrt{3}}{3}$£®
ÁªÁ¢$\left\{\begin{array}{l}{y=-\frac{\sqrt{3}}{3}x+\frac{3-\sqrt{3}}{3}}\\{y=-x}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{x=-1}\\{y=1}\end{array}\right.$£¬
¹ÊµãP2µÄ×ø±êΪ£¨-1£¬1£©£®
×ÛÉÏ¿ÉÖª£ºÔÚÖ±Ïßl£ºy=-xÉÏ´æÔÚµãP£¬Ê¹µÃÒÔO£¬G£¬H£¬PΪ¶¥µãµÄËıßÐÎΪóÝÐΣ¬µãPµÄ×ø±êΪ£¨$\frac{\sqrt{3}-1}{2}$£¬-$\frac{\sqrt{3}-1}{2}$£©»ò£¨-1£¬1£©£®

µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯ÊýµÄÓ¦Óá¢óÝÐεÄÓ¦Óá¢È«µÈÈý½ÇÐεÄÅж¨¼°ÐÔÖÊ¡¢´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽÒÔ¼°½â¶þÔªÒ»´Î·½³Ì×飬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©ÕÒ³öBF=DF£»£¨2£©Ö¤Ã÷¡÷ABD¡Õ¡÷CBD£»£¨3£©ÕÒ³öµãPµÄλÖã®±¾ÌâÊôÓÚÖеµÌ⣬£¨1£©£¨2£©ÄѶȲ»´ó£¬£¨3£©ÄѶÈÒ²²»´ó£¬µ«ÔÚʵ¼Ê×öÌâÖУ¬²¿·ÖͼÐÎÍùÍù»áÂäÏÂÒ»ÖÖÇé¿ö£¬Òò´ËÔÚÈÕ³£µÄÁ·Ï°ÖÐӦʱ¿ÌÌáÐѺ¢×ÓÃÇ×¢Òâ˼¿¼ÎÊÌâµÄÈ«ÃæÐÔ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏA=90¡ã£¬¡ÏC=60¡ã£¬Ö±ÏßDE¡ÎBC£¬·Ö±ð½»±ßAB£¬ACÓÚµãD£¬E£¬Çó¡Ï1µÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªÖ±Ïßy=kx+b¹ýµãA£¨x1£¬y1£©£¬µãB£¨x2£¬y2£©£¬Èôx1£¼x2ʱ£¬ÓÐy1£¾y2£¬ÔòkµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®k£¾0B£®k£¼0C£®k=0D£®²»ÄÜÈ·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªy-2Óë3x-4³ÉÕý±ÈÀýº¯Êý¹Øϵ£¬ÇÒµ±x=2ʱ£¬y=3£®
£¨1£©Ð´³öyÓëxÖ®¼äµÄº¯Êý½âÎöʽ£»
£¨2£©ÈôµãP£¨a£¬-3£©ÔÚÕâ¸öº¯ÊýµÄͼÏóÉÏ£¬ÇóaµÄÖµ£»
£¨3£©ÈôyµÄÈ¡Öµ·¶Î§Îª-1¡Üy¡Ü1£¬ÇóxµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªº¯Êýy=x2+3kx+k+1µÄͼÏóµÄ¶¥µãÔÚyÖáÉÏ£¬ÄÇôº¯ÊýµÄ¹ØϵʽÊÇy=x2+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì2x2+mx+n=0µÄÁ½¸ö¸ùÊÇ1ºÍ-1£¬ÔòmnµÄÖµÊÇ0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èçͼ£¬ÔÚ?ABCDÖУ¬µãEÔÚAD±ßÉÏ£¬AE=2ED£¬Á¬½ÓEB½»ACÓÚµãF£¬ÈôAC=10£¬ÔòAFΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®£¨±³¾°£©Ä³°àÔÚÒ»´ÎÊýѧʵ¼ù»î¶¯ÖУ¬¶Ô¾ØÐÎֽƬ½øÐÐÕÛµþʵ¼ù²Ù×÷£¬²¢½«Æä²úÉúµÄÊýѧÎÊÌâ½øÐÐÏà¹Ø̽¾¿£®
£¨²Ù×÷£©Èçͼ£¬ÔÚ¾ØÐÎABCDÖУ¬AD=6£¬AB=4£¬µãPÊÇBC±ßÉÏÒ»µã£¬ÏÖ½«¡÷APBÑØAP¶ÔÕÛ£¬µÃ¡÷APM£¬ÏÔÈ»µãMλÖÃËæPµãλÖñ仯¶ø·¢Éú¸Ä±ä
£¨ÎÊÌ⣩ÊÔÇóÏÂÁм¸ÖÖÇé¿öÏ£ºµãMµ½Ö±ÏßCDµÄ¾àÀë
£¨1£©¡ÏAPB=75¡ã£»£¨2£©PÓëCÖغϣ»£¨3£©PÊÇBCµÄÖе㣮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èô¹ØÓÚaµÄ·½³Ì£¨a-1£©x2+x+a2-2a-1=0µÄÒ»¸ùΪ-1£¬ÇóxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸