精英家教网 > 初中数学 > 题目详情
(2012•三明)在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=
1
2
∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.
(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;
(2)通过观察、测量、猜想:
BF
PE
=
1
2
1
2
,并结合图2证明你的猜想;
(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求
BF
PE
的值.(用含α的式子表示)
分析:(1)由四边形ABCD是正方形,P与C重合,易证得OB=OP,∠BOC=∠BOG=90°,由同角的余角相等,证得∠GBO=∠EPO,则可利用ASA证得:△BOG≌△POE;
(2)首先过P作PM∥AC交BG于M,交BO于N,易证得△BMN≌△PEN(ASA),△BPF≌△MPF(ASA),即可得BM=PE,BF=
1
2
BM.则可求得
BF
PE
的值;
(3)首先过P作PM∥AC交BG于点M,交BO于点N,由(2)同理可得:BF=
1
2
BM,∠MBN=∠EPN,继而可证得:△BMN∽△PEN,然后由相似三角形的对应边成比例,求得
BF
PE
的值.
解答:(1)证明:∵四边形ABCD是正方形,P与C重合,
∴OB=OP,∠BOC=∠BOG=90°,
∵PF⊥BG,∠PFB=90°,
∴∠GBO=90°-∠BGO,∠EPO=90°-∠BGO,
∴∠GBO=∠EPO,
在△BOG和△POE中,
∠GBO=∠EPO
OB=OP
∠BOG=∠COE

∴△BOG≌△POE(ASA);

(2)解:猜想
BF
PE
=
1
2

证明:如图2,过P作PM∥AC交BG于M,交BO于N,
∴∠PNE=∠BOC=90°,∠BPN=∠OCB.
∵∠OBC=∠OCB=45°,
∴∠NBP=∠NPB.
∴NB=NP.
∵∠MBN=90°-∠BMN,∠NPE=90°-∠BMN,
∴∠MBN=∠NPE,
在△BMN和△PEN中,
∠MBN=∠NPE
NB=NP
∠MNB=∠PNE=90°

∴△BMN≌△PEN(ASA),
∴BM=PE.
∵∠BPE=
1
2
∠ACB,∠BPN=∠ACB,
∴∠BPF=∠MPF.
∵PF⊥BM,
∴∠BFP=∠MFP=90°.
在△BPF和△MPF中,
∠BPF=∠MPF
PF=PF
∠PFB=∠PFM

∴△BPF≌△MPF(ASA).                                        
∴BF=MF. 
即BF=
1
2
BM.
∴BF=
1
2
PE.
BF
PE
=
1
2


(3)解法一:如图3,过P作PM∥AC交BG于点M,交BO于点N,
∴∠BPN=∠ACB=α,∠PNE=∠BOC=90°,
由(2)同理可得:BF=
1
2
BM,∠MBN=∠EPN,
∵∠BNM=∠PNE=90°,
∴△BMN∽△PEN.
BM
PE
=
BN
PN

在Rt△BNP中,tanα=
BN
PN

BM
PE
=tanα.
2BF
PE
=tanα.
BF
PE
=
1
2
tanα.               

解法二:如图3,过P作PM∥AC交BG于点M,交BO于点N,
∴BO⊥PM,∠BPN=∠ACB=α,
∵∠BPE=
1
2
∠ACB=
1
2
α,PF⊥BM,
∴∠EPN=
1
2
α.∠MBN=∠EPN=∠BPE=
1
2
α.
设BF=x,PE=y,EF=m,
在Rt△PFB中,tan
α
2
=
BF
PF

∵PF=PE+EF=y+m,
∴x=(y+m)tan
α
2

在Rt△BFE中,tan
α
2
=
EF
BF
=
m
x

∴m=x•tan
α
2

∴x=(y+xtan
α
2
)•tan
α
2

∴x=y•tan
α
2
+x•tan2
α
2

∴(1-tan2
α
2
)x=y•tan
α
2

x
y
=
tan
α
2
1-tan2
α
2

BF
PE
=
tan
α
2
1-tan2
α
2


解法三:如图3,过P作PM∥AC交BG于点M,交BO于点N,
∴∠BNP=∠BOC=90°.
∴∠EPN+∠NEP=90°.
又∵BF⊥PE,
∴∠FBE+∠BEF=90°.
∵∠BEF=∠NEP,
∴∠FBE=∠EPN,
∵PN∥AC,
∴∠BPN=∠BCA=α.
又∵∠BPE=
1
2
∠ACB=
1
2
α,
∴∠NPE=∠BPE=
1
2
α.
∴∠FBE=∠BPE=∠EPN=
1
2
α.
∵sin∠FPB=
BF
BP

∴BP=
BF
sin
α
2
,)
∵cos∠EPN=
PN
PE

∴PN=PE•cos
α
2

∵cos∠NPB=
PN
BP

∴PN=BP•cosα,
∴EP•cos
α
2
=BP•cosα,
∴EP•cos
α
2
=
BF
sin
α
2
•cosα,
BF
PE
=
sin
α
2
•cos
α
2
cosα
点评:此题考查了正方形的性质、菱形的性质、相似三角形的判定与性质、全等三角形的判定与性质以及三角函数的定义等知识.此题综合性很强,难度较大,注意准确作出辅助线是解此题的关键,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•三明)在一个不透明的盒子里有3个分别标有数字5,6,7的小球,它们除数字外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出
1个球,那么这两个球上的数字之和为奇数的概率为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•三明)在-2,-
1
2
,0,2四个数中,最大的数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•三明)如图是一个由相同小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置上的小正方体的个数,则这个几何体的左视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•三明)已知直线y=2x-5与x轴和y轴分别交于点A和点B,抛物线y=-x2+bx+c的顶点M在直线AB上,且抛物线与直线AB的另一个交点为N.
(1)如图,当点M与点A重合时,求:
①抛物线的解析式;
②点N的坐标和线段MN的长;
(2)抛物线y=-x2+bx+c在直线AB上平移,是否存在点M,使得△OMN与△AOB相似?若存在,直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案