精英家教网 > 初中数学 > 题目详情
(2013•宜兴市一模)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2
3
),(-1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是(  )
分析:首先根据给出的点的坐标判定三角形ABC是等边三角形,作点B关于AC的对称点E,连接EP、EB、ED、EC,则PB+PD=PE+PD,因此ED的长就是PB+PD的最小值,即当点P运动到ED与AC的交点G时,△PBD的周长最小.
解答:解:如图,作点B关于AC的对称点E,连接EP、EB、ED、EC,则PB+PD=PE+PD,因此ED的长就是PB+PD的最小值,即当点P运动到ED与AC的交点G时,△PBD的周长最小.
∵A、B、C三点的坐标分别为(1,2
3
),(-1,0),(3,0),点D为BC中点,
∴AB=
12+4
=4,BC=4,AC=
12+4
=4,
∴△ABC是等边三角形,
从点D作DF⊥BE,垂足为F,因为BC=4,所以BD=2,
BE=2
42-22
=4
3

因为∠DBF=30°,所以DF=
1
2
BD=1,BF=
3
,EF=BE-BF=4
3
-
3
=3
3
,DE=
DF2+EF2
=2
7

所以△PBD的周长的最小值是2+2
7

故选A.
点评:本题考查了等边三角形的判定和性质以及勾股定理的灵活运用,解本题的关键是作出恰当的图形,并且根据勾股定理求各边长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宜兴市一模)由于受到手机更新换代的影响,某手机店经销的甲型号手机二月份售价比一月份售价每台降价500元.如果卖出相同数量的手机,那么一月份销售额为9万元,二月份销售额只有8万元.
(1)求二月份甲型号手机每台售价为多少元?
(2)为了提高利润,该店计划三月份加入乙型号手机销售,已知甲型每台进价为3500元,乙型每台进价为4000元,预计用不多于7.6万元且不少于7.5万元的资金购进这两种手机共20台,请问有几种进货方案?
(3)对于(2)中刚进货的20台两种型号的手机,该店计划对甲型号手机在二月份售价基础上每售出一台甲型手机再返还顾客现金a元,乙型手机按销售价4400元销售,若要使(2)中所有方案获利相同,a应取何值?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宜兴市一模)如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E=
50°
50°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宜兴市一模)如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB,△PBC,△PAC均是等腰三角形,则满足上述条件的所有点P的个数为
6
6
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宜兴市一模)如图1,BA⊥MN,垂足为A,BA=4,点P是射线AN上的一个动点(点P与点A不重合),∠BPC=∠BPA,BC⊥BP,过点C作CD⊥MN,垂足为D,设AP=x.
(1)CD的长度是否随着x的变化而变化?若变化,请用含x的代数式表示CD的长度;若不变化,请求出线段CD的长度.
(2)△PBC的面积是否存在最小值?若存在,请求出这个最小值,并求出此时的x的值;若不存在,请说明理由.
(3)当x取何值时,△ABP和△CDP相似.  
(4)如图2,当以C为圆心,以CP为半径的圆与线段AB有公共点时,求x的值.

查看答案和解析>>

同步练习册答案