精英家教网 > 初中数学 > 题目详情

“十一黄金周”的某一天,小刚全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩,该小汽车离家的路程S(千米)与时间t (时)的关系可以用右图的折线表示。根据图象提供的有关信息,解答下列问题:

(1)小刚全家在旅游景点游玩了多少小时?
(2)求出整个旅程中S(千米)与时间t (时)的函数关系式,并求出相应自变量t的取值范围。
(3)小刚全家在什么时候离家120㎞?什么时候到家?

(1)4;(2)s=90t-720(8≤t≤10),s=180(10≤t≤14),s=-60t+1020(14≤t);(3)9时20分或15时,t=17.

解析试题分析:(1)根据图示,在旅游景点停留的时间可以知道游玩的时间.
(2)根据图象信息可以得出整个旅程中S(千米)与时间t (时)的函数关系式,讨论实际情况得到t的取值范围.
(3)从图中信息可知当t=8时,S=0,当t=10时,S=180,可算出去时距离120km时的时间,由图可知回来时当t=15时,S=120km.根据回来时的函数可得到家的时间.
试题解析:(1)由图示信息可知,在距离180千米的某著名旅游景点游玩,停留了4小时,所以游玩了14-10=4小时
(2)当8≤t≤10时
设s=kt+b过点(8,0),(10,180)
得s=90t-720.
当10≤t≤14时
s=180
当14≤t时
过点(14,180),(15,120)得
∴s=90t-720(8≤t≤10)
s=180(10≤t≤14)
s=-60t+1020(14≤t)
(3)当s=120km时,
90t-720=120得t=9
即9时20分
-60t+1020=120得t=15.
当s=0时
-60t+1020=0得t=17.
答:9时20分或15时离家120㎞,17时到家。
考点:一次函数的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,已知直线y=-x+4与反比例函数y=的图象相交于点A(-2,a),并且与x轴相交于点B。

(1)求a的值;
(2)求反比例函数的表达式;
(3)求△AOB的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知一次函数的图象相交于A点,函数的图象分别交轴、轴于点B,C,函数的图象分别交轴、轴于点E,D.

(1)求A点的坐标;
(2)求的面积

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知y是x的一次函数,当x=2时,y=-1,且这个一次函数的图象与直线y=2x平行.试求y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

小亮家距离学校8千米,昨天早晨,小亮骑车上学途中,自行车“爆胎”,恰好路边有“自行车”维修部,几分钟后车修好了,为了不迟到,他加快了骑车到校的速度.回校后,小亮根据这段经历画出如下图象.该图象描绘了小亮行的路程S与他所用的时间t之间的关系.请根据图象,解答下列问题:

(1)小亮行了多少千米时,自行车“爆胎”?修车用了几分钟?
(2)小亮到校路上共用了多少时间?
(3)如果自行车没有“爆胎”,一直用修车前的速度行驶,那么他比实际情况早到或晚到学校多少分钟(精确到0.1)?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线y=-x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B'处.

求(1)点B'的坐标.(2)直线AM所对应的函数关系式

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示.

x
50
60
90
120
y
40
38
32
26
(1)求y关于x的函数解析式;
(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在“美丽广西,清洁乡村”活动中,李家村村长提出了两种购买垃圾桶方案;方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元;设方案1的购买费和每月垃圾处理费共为y1元,交费时间为x个月;方案2的购买费和每月垃圾处理费共为y2元,交费时间为x个月.

(1)直接写出y1、y2与x的函数关系式;
(2)在同一坐标系内,画出函数y1、y2的图象;
(3)在垃圾桶使用寿命相同的情况下,哪种方案省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知成正比例,且当时,.
(1)求的函数关系式;
(2)求当时的函数值.

查看答案和解析>>

同步练习册答案