精英家教网 > 初中数学 > 题目详情
11.已知一次函数y=2x+4
(1)在如图所示的平面直角坐标系中,画出函数的图象;
(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;
(3)在(2)的条件下,求出△AOB的面积;
(4)利用图象直接写出:当y<0时,x的取值范围.

分析 (1)利用两点法就可以画出函数图象;(2)利用函数解析式分别代入x=0与y=0的情况就可以求出交点坐标;(3)通过交点坐标就能求出面积;(4)观察函数图象与x轴的交点就可以得出结论.

解答 解:(1)当x=0时y=4,当y=0时,x=-2,则图象如图所示

(2)由上题可知A(-2,0)B(0,4),
(3)S△AOB=$\frac{1}{2}$×2×4=4,
(4)x<-2.

点评 本题考查了一次函数的图象和一次函数图象上点的坐标特征.正确求出一次函数与x轴与y轴的交点是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

1.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为BD,则图中阴影部分的面积是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{π}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知反比例函数y=$\frac{k}{x}$的图象经过点(2,-1),则k=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:
(1)当d=3时,m=1;
(2)当m=2时,d的取值范围是1<d<3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图象;也可以把函数y=x的图象上各点的横坐标变为原来的$\frac{1}{2}$倍,纵坐标不变,得到函数y=2x的图象.
类似地,我们可以认识其他函数.
(1)把函数y=$\frac{1}{x}$的图象上各点的纵坐标变为原来的6倍,横坐标不变,得到函数y=$\frac{6}{x}$的图象;也可以把函数y=$\frac{1}{x}$的图象上各点的横坐标变为原来的6倍,纵坐标不变,得到函数y=$\frac{6}{x}$的图象.
(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移$\frac{1}{2}$个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的$\frac{1}{2}$倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.
(Ⅰ)函数y=x2的图象上所有的点经过④→②→①,得到函数y=4(x-1)2-2的图象;
(Ⅱ)为了得到函数y=-$\frac{1}{4}$(x-1)2-2的图象,可以把函数y=-x2的图象上所有的点D.
A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥
(3)函数y=$\frac{1}{x}$的图象可以经过怎样的变化得到函数y=-$\frac{2x+1}{2x+4}$的图象?(写出一种即可)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,正方形ABCD中,以对角线AC为一边作菱形AEFC,则∠FAB=22.5°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列结论错误的是(  )
A.对角线相等的菱形是正方形
B.对角线互相垂直的矩形是正方形
C.对角线互相垂直且相等的四边形是正方形
D.对角线互相垂直且相等的平行四边形是正方形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.阅读下面材料:
在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?
小敏在思考问题是,有如下思路:连接AC.

结合小敏的思路作答
(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决以下问题:
(2)如图2,在(1)的条件下,若连接AC,BD.
①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;
②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:
(1)本次调查属于抽样调查,样本容量是50;
(2)请补全频数分布直方图中空缺的部分;
(3)求这50名学生每周课外体育活动时间的平均数;
(4)估计全校学生每周课外体育活动时间不少于6小时的人数.

查看答案和解析>>

同步练习册答案