精英家教网 > 初中数学 > 题目详情

如图,在直角三角形ABC的斜边AB上取两点D、E,使AD=AC,BE=BC.
(1)当∠B=60°时,求∠DCE.
(2)当∠B的度数发生变化时,∠DCE有变化吗?如果变化,请说明如何变化;如果不变,请说明理由.作业宝

解:(1)∵∠B=60°,∠ACB=90°,BE=BC,
∴∠CED=60°,∠A=30°,
∵AD=AC,
∴∠CDE=75°,
∴∠DCE=180°-60°-75°=45°,

(2)当∠B的度数发生变化时,∠DCE没有变化,
∵∠ACB=90°,BE=BC,
∴∠CED=
∵AD=AC,
∴∠CDE=
∴∠DCE=180°-[]=180°-135°=45°,
∴当∠B的度数发生变化时,∠DCE没有变化.
分析:(1)由∠B=60°,即可推出∠CED=60°,∠A=30°,再由AD=AC,可得∠CDE=75°,然后,根据三角形内角和定理即可推出∠DCE=180°-60°-75°=45°,(2)根据(1)的结论,即可推出∠DCE=180°-[]=180°-135°=45°,所以,∠DCE的度数与∠B的度数无关.
点评:本题主要考查等腰三角形的性质、直角三角形的性质、三角形内角和定理,关键在于熟练运用各性质定理,推出∠DCE与∠B的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在直角三角形ABC中∠C=90°,则sinA=
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角三角形中,一直角边比另一直角边长1,且斜边长为5.
(1)请画出这个直角三角形的内切圆;
(2)并求出此内切圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角三角形ABC中,AD为斜边上的垂线,AE为角平分线,AF为中线,
(1)证明:AF=BF=CF;
(2)写出∠FAE和∠DAE的关系并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角三角形ABC中,∠C=90°,AB=4,阴影部分的面积为(  )
A、2πB、3πC、4πD、6π

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP=
5cm或10cm
时,才能使△ABC和△APQ全等.

查看答案和解析>>

同步练习册答案