精英家教网 > 初中数学 > 题目详情
8.若一组数据2,3,4,5,x的方差与另一组数据25,26,27,28,29的方差相等,则x的值为(  )
A.1B.6C.1或6D.5或6

分析 根据数据x1,x2,…xn与数据x1+a,x2+a,…,xn+a的方差相同这个结论即可解决问题.

解答 解:∵一组数据2,3,4,5,x的方差与另一组数据25,26,27,28,29的方差相等,
∴这组数据可能是2,3,4,5,6或1,2,3,4,5,
∴x=1或6,
故选C.

点评 本题考查方差、平均数等知识,解题的关键利用结论:数据x1,x2,…xn与数据x1+a,x2+a,…,xn+a的方差相同解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.3的相反数是(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.-3D.-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知抛物线经过A(1,0)、B(0,3)两点,对称轴是x=-1
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OM上运动,同时动点M从M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,直接写出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.计算:|-2|+$\root{3}{-8}$+(π-3.14)0=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,点A的坐标为(-8,0),点P的坐标为$({-\frac{7}{4},0})$,直线y=$\frac{3}{4}$x+b过点A,交y轴于点B,以点P为圆心,以PA为半径的圆交x轴于点C.
(1)判断点B是否在⊙P上?说明理由.
(2)求过A、B、C三点的抛物线的解析式;并求抛物线与⊙P另外一个交点为D的坐标.
(3)⊙P上是否存在一点Q,使以A、P、B、Q为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交$\widehat{AC}$于点D,过点D作DE∥AC,交BA的延长线于点E,连接AD,CD.
(1)求证:DE是⊙O的切线;
(2)若OA=AE=2时,
①求图中阴影部分的面积;
②以O为原点,AB所在的直线为x轴,直径AB的垂直平分线为y轴,建立如图所示的平面直角坐标系,试在线段AC上求一点P,使得直线DP把阴影部分的面积分成1:2的两部分.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.(1)计算:($\frac{1}{3}}$)-2+($\sqrt{2010}$-$\sqrt{2012}}$)0+(-1)1001+($\sqrt{12}$-3$\sqrt{3}}$)×tan30°
(2)先化简,再求值:$\frac{1}{2a}$-$\frac{1}{a-b}$($\frac{a-b}{2a}$-a2+b2),其中a=3-2$\sqrt{2}$,b=3$\sqrt{2}$-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,正方形ABCD的边长为12,点E是射线BC上的一个动点,连接AE并延长,交射线DC于点F,将△ABE沿直线AE翻折,点B落在点B'处.
(1)当$\frac{BE}{CE}$=1时,如图1,延长AB′,交CD于点M,
①CF的长为12;
②求证:AM=FM.
(2)当点B′恰好落在对角线AC上时,如图2,此时CF的长为12$\sqrt{2}$;$\frac{BE}{CE}$=$\frac{1}{2}\sqrt{2}$.
(3)当$\frac{BE}{CE}$=3时,求∠DA B'的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图1,在平面直角坐标系中,圆D与y轴相切于点C(0,4),与x轴相交于A、B两点,且AB=6.

(1)D点的坐标是(5,4),圆的半径为5;
(2)求经过C、A、B三点的抛物线所对应的函数关系式;
(3)设抛物线的顶点为F,试证明直线AF与圆D相切;
(4)在x轴下方的抛物线上,是否存在一点N,使△CBN面积最大,最大面积是多少?并求出N点坐标.

查看答案和解析>>

同步练习册答案