【题目】已知半径为10的⊙O中,弦,弦AC=10,则∠BAC的度数是为________
【答案】15°或105°
【解析】
根据点O与∠BAC的位置分类讨论,分别画出对应的图形,利用勾股定理的逆定理和等边三角形的性质分别求出∠OAB和∠OAC,即可求出∠BAC的度数.
解:若点O在∠BAC的内部,如下图所示,连接OB、OA和OC
∴OA=OB=OC=10
∵弦,弦AC=10,
∴OB2+OA2=200=AB2,OA=AC=OC
∴△OAB为等腰直角三角形,△OAC为等边三角形
∴∠OAB=45°,∠OAC=60°
∴∠BAC=∠OAB+∠OAC=105°;
若点O不在∠BAC的内部,如下图所示,连接OB、OA和OC
∴OA=OB=OC=10
∵弦,弦AC=10,
∴OB2+OA2=200=AB2,OA=AC=OC
∴△OAB为等腰直角三角形,△OAC为等边三角形
∴∠OAB=45°,∠OAC=60°
∴∠BAC=∠OAC-∠OAB=15°;
综上所述:∠BAC=15°或105°
故答案为:15°或105°.
科目:初中数学 来源: 题型:
【题目】2019年全国两会于3月5日在人民大会堂开幕,某社区为了解居民对此次两会的关注程度,在全社区范围内随机抽取部分居民进行问卷调查,根据调查结果,把居民对两会的关注程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下不完整的统计图:
请结合图表中的信息,解答下列问题:
(1)此次调查一共随机抽取了_____名居民;
(2)请将条形统计图补充完整;
(3)扇形统计图中,“很强”所对应扇形圆心角的度数为_____;
(4)若该社区有1500人,则可以估计该社区居民对两会的关注程度为“淡薄”层次的约有 _____人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥,该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径是6cm,下底面直径为4cm,母线长为EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积(面积计算结果用表示) .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图,直线和相交于点A,且分别与x轴交于B,C两点,过点A的双曲线()与直线的另一交点为点D.
(1)求双曲线的解析式;
(2)求△BCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某文具店每天售出甲、乙两种笔,统计后发现:甲、乙两种笔同一天售出量之间满足一次函数的关系,设甲、乙两种笔同一天的售出量分别为x(支)、y(支),部分数据如表所示(下表中每一列数据表示甲、乙两种笔同一天的售出量).
甲种笔售出x(支) | … | 4 | 6 | 8 | … |
乙种笔售出y(支) | … | 6 | 12 | 18 | … |
(1)求y关于x的函数关系式;(不需要写出函数的定义域)
(2)某一天文具店售出甲、乙两种笔的营业额分别为30元和120元,如果乙种笔每支售价比甲种笔每支售价多2元,那么甲、乙两种笔这天各售出多少支?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC与△ABD中,∠CAB=∠DBA=β,且∠ADB+∠ACB=180°.
提出问题:如图1,当∠ADB=∠ACB=90°时,求证:AD=BC;
类比探究:如图2,当∠ADB≠∠ACB时,AD=BC是否还成立?并说明理由.
综合运用:如图3,当β=18°,BC=1,且AB⊥BC时,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,的三个顶点坐标分别为,,.
(1)画出关于轴对称的;
(2)以点为位似中心,在网格中画出的位似图形,使与的相似比为.
(3)设点为内一点,则依上述两次变换后,点在内的对应点的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,为原点,抛物线经过三点,且其对称轴为其中点,点.
(1)求抛物线的解析式;
(2)①如图(1),点是直线上方抛物线上的动点,当四边形的面积取最大值时,求点的坐标;
②如图(2),连接在抛物线上有一点满足,请直接写出点的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,则下列结论:①b2﹣4ac>0;②ac<0;③m>2,其中正确结论的个数是( )
A.0B.1C.2D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com