精英家教网 > 初中数学 > 题目详情
在10×10的网格纸上建立平面直角坐标系如图所示,在Rt△ABC中,∠OAB=90°,且点B的坐标为(3,4).
(1)画出△OAB向左平移3个单位后的△O1A1B1,写出点B1的坐标;
(2)画出△OAB绕点O顺时针旋转90°后的△OA2B2,并求点B旋转到点B2时,点B经过的路线长(结果保留π).

【答案】分析:(1)根据平移的规律找到出平移后的对应点的坐标,顺次连接即可;
(2)根据旋转的性质找出旋转后各个对应点的坐标,顺次连接即可.点B经过的路线是以点A1作为圆心,AB长为半径,圆心角是90度的扇形的弧长.
解答:解:
(1)B1(0,4);

(2)画图(如右图).
∵OB==5,
∴点B旋转到点B2时,经过的路线长为
点评:本题考查的是平移变换与旋转变换作图.
作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.
作旋转后的图形的依据是旋转的性质,基本作法是①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.
练习册系列答案
相关习题

科目:初中数学 来源:2013年浙江省湖州市中考数学试卷(解析版) 题型:选择题

如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y轴的抛物线条数是( )
A.16
B.15
C.14
D.13

查看答案和解析>>

科目:初中数学 来源:2012年山东省德州市育英中学中考数学模拟试卷(三)(解析版) 题型:解答题

(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形,请你只用无刻度的直尺在图中画出∠AOB的平分线;(保留作图痕迹,不要求写作法)
(2)如图2,在10×10的正方形网格中,点A(0,0)、B(5,0)、C(3,6)、D(-1,3),
①依次连接A、B、C、D四点得到四边形ABCD,四边形ABCD的形状是______;
②在x轴上找一点P,使得△PCD的周长最短(直接画出图形,不要求写作法),此时,点P的坐标为______,最短周长为______

查看答案和解析>>

科目:初中数学 来源:2009年辽宁省沈阳市和平区中考数学监测卷(二)(解析版) 题型:解答题

如图,在10×10的正方形网格中△ABC与△DEF的顶点,都在边长为1 的小正方形顶点上,且点A与原点重合.
(1)画出△ABC关于点B为对称中心的中心对称图形△A′BC′,画出将△DEF向右平移6个单位且向上平移2个单位的△D′E′F′;
(2)求经过A、B、C三点的二次函数关系式,并求出顶点坐标.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省杭州市中考数学模拟试卷(解析版) 题型:解答题

(2010•扬州二模)(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形,请你只用无刻度的直尺在图中画出∠AOB的平分线;(保留作图痕迹,不要求写作法)
(2)如图2,在10×10的正方形网格中,点A(0,0)、B(5,0)、C(3,6)、D(-1,3),
①依次连接A、B、C、D四点得到四边形ABCD,四边形ABCD的形状是______;
②在x轴上找一点P,使得△PCD的周长最短(直接画出图形,不要求写作法),此时,点P的坐标为______,最短周长为______

查看答案和解析>>

科目:初中数学 来源:2010年江苏省无锡市北片区中考数学一模试卷(解析版) 题型:解答题

(2010•扬州二模)(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形,请你只用无刻度的直尺在图中画出∠AOB的平分线;(保留作图痕迹,不要求写作法)
(2)如图2,在10×10的正方形网格中,点A(0,0)、B(5,0)、C(3,6)、D(-1,3),
①依次连接A、B、C、D四点得到四边形ABCD,四边形ABCD的形状是______;
②在x轴上找一点P,使得△PCD的周长最短(直接画出图形,不要求写作法),此时,点P的坐标为______,最短周长为______

查看答案和解析>>

同步练习册答案