精英家教网 > 初中数学 > 题目详情

如图,等腰梯形ABCD中,ADBCADABCD=2,∠C=60°,MBC的中点.

(1)求证:△MDC是等边三角形;
(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点EMC(即MC′)同时与AD交于一点F时,点EF和点A构成△AEF.试探究△AEF的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.

(1)证明:过点DDPBC,于点P,过点AAQBC于点Q

∵∠C=∠B=60°
CPBQABCPBQAB
又∵ADPQ是矩形,ADPQ
BC=2AD
由已知,点MBC的中点,
BMCMADABCD
即△MDC中,CMCD,∠C=60°,
故△MDC是等边三角形.
(2)解:△AEF的周长存在最小值,理由如下:
连接AM,由(1)平行四边形ABMD是菱形,
MAB,△MAD和△MCD′是等边三角形,
BMA=∠BME+∠AME=60°,∠EMF=∠AMF+∠AME=60°,
∴∠BME=∠AMF
在△BME与△AMF中,BMAM,∠EBM=∠FAM=60°,
∴△BME≌△AMF(ASA),
BEAFMEMFAEAFAEBEAB
∵∠EMF=∠DMC=60°,故△EMF是等边三角形,EFMF
MF的最小值为点MAD的距离,即EF的最小值是
AEF的周长=AEAFEFABEF
AEF的周长的最小值为2+
所以存在,△AEF的周长的最小值为2+

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,等腰梯形ABCD中,AB∥CD,∠A=60°,BD平分∠ABC,若梯形ABCD的周长为40cm,则CD的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知:如图,等腰梯形ABCD中,AD∥BC,BD平分∠ABC.
(1)求证:AB=AD;
(2)若AD=2,∠C=60°,求等腰梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•昌平区二模)已知:如图,等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,BD=4
3

(1)求证:AB=AD;
(2)求△BCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰梯形ABCD中,AD∥BC,AB=CD,对角线BD平分∠ABC,且BD⊥DC,上底AD=3cm.
(1)求∠ABC的度数; 
(2)求梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰梯形ABCD中,AD∥BC,AB=CD,BD平分∠ABC,BD⊥DC,延长BC到E,使CE=AD.
(1)求证:BD=DE;
(2)当DC=2时,求梯形面积.

查看答案和解析>>

同步练习册答案