【题目】如图,在中,,,.将绕点逆时针旋转得到,则图中阴影部分的面积是______.
【答案】
【解析】
令AB与B′C′交于点D,根据三角函数求出AC=1,∠BAC=60°,即可得到AB=2,∠ABC=30°,再根据旋转的性质得到AC′=AC=1,AB′=AB=2,B′C′=BC=,∠B′AB=30°,∠C′AB′=∠CAB=60°,则∠C′AD=∠C′AB′∠BAB′=30°,接着在Rt△AC′D中,利用∠C′AD=30°可得C′D,从而求出 B′D,然后根据三角形面积公式、扇形面积公式进行计算即可.
解:∵∠C=90°,,,
∴∠BAC=60°,AC=1,
∴∠ABC=30°,即AB=2AC=2,
令AB与B′C′交于点D,
∵Rt△ABC绕点A逆时针旋转30°后得到△AB′C′,
∴AC′=AC=1,AB′=AB=2,B′C′=BC=,∠B′AB=30°,∠C′AB′=∠CAB=60°,
∴∠C′AD=∠C′AB′-∠BAB′=60°-30°=30°,
在Rt△AC′D中,∵∠C′AD=30°,
∴C′D=,
∴B′D=B′C′-C′D=,
∴图中阴影部分的面积=S扇形BAB′-S△ADB′ .
故答案为:.
科目:初中数学 来源: 题型:
【题目】甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/.在乙批发店,一次购买数量不超过时,价格为7元/;一次购买数量超过时,其中有的价格仍为7元/,超过部分的价格为5元/.设小王在同一个批发店一次购买苹果的数量为.
(Ⅰ)根据题意填空:
①若一次购买数量为时,在甲批发店的花费为________元,在乙批发店的花费为________元;
②若一次购买数量为时,在甲批发店的花费为________元,在乙批发店的花费为________元;
(Ⅱ)设在甲批发店花费元,在乙批发店花费元,分别求,关于的函数解析式;
(Ⅲ)根据题意填空:
①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为_________;
②若小王在同一个批发店一次购买苹果的数量为,则他在甲、乙两个批发店中的________批发店购买花费少;
③若小王在同一个批发店一次购买苹果花费了260元,则他在甲、乙两个批发店中的_________批发店购买数量多.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多:C.了解较少:D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:
(1)本次被抽取的学生共有_______名;
(2)请补全条形图;
(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为_______°;
(4)若该校共有名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有( )
①c>0;②b2-4ac<0;③ a-b+c>0;④当x>-1时,y随x的增大而减小.
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形中,,,是射线上的点,连接,将沿直线翻折得.
(1)如图①,点恰好在上,求证:∽;
(2)如图②,点在矩形内,连接,若,求的面积;
(3)若以点、、为顶点的三角形是直角三角形,则的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点的坐标为,点在轴正半轴上,且,以为边在第一象限内作正方形,且双曲线经过点.
(1)求的值;
(2)将正方形沿轴负方向平移得到正方形,当点恰好落在双曲线上时,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB=AC,BD为⊙O的直径,过点A作AE⊥BD于点E,延长BD交AC延长线于点F.
(1)若AE=4,AB=5,求⊙O的半径;
(2)若BD=2DF,求sin∠ACB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在△ABC中,∠B=90o,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E.
(1)求证:AC·AD=AB·AE;
(2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知C为线段AB中点,∠ACM=α.Q为线段BC上一动点(不与点B重合),点P在射线CM上,连接PA,PQ,记BQ=kCP.
(1)若α=60°,k=1,
①如图1,当Q为BC中点时,求∠PAC的度数;
②直接写出PA、PQ的数量关系;
(2)如图2,当α=45°时.探究是否存在常数k,使得②中的结论仍成立?若存在,写出k的值并证明;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com