精英家教网 > 初中数学 > 题目详情
6.(1)如图1,△ABC与△ADE均是顶角为40°的等腰三角形,BC、DE分别是底边,求证:BD=CE;
(2)如图2,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.
填空:∠AEB的度数为60°;线段BE与AD之间的数量关系是BE=AD.
(3)拓展探究
如图3,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.

分析 (1)根据全等三角形的判定方法,判断出△BAD≌△CAE,即可判断出BD=CE.
(2)首先根据△ACB和△DCE均为等边三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=60°,∠CDE=∠CED=60°,据此判断出∠ACD=∠BCE;然后根据全等三角形的判定方法,判断出△ACD≌△BCE,即可判断出BE=AD,∠BEC=∠ADC,进而判断出∠AEB的度数为60°即可.
(3)首先根据△ACB和△DCE均为等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE;然后根据全等三角形的判定方法,判断出△ACD≌△BCE,即可判断出BE=AD,∠BEC=∠ADC,进而判断出∠AEB的度数为90°即可;最后根据DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,据此判断出AE=BE+2CM即可.

解答 (1)证明:∵∠BAC=∠DAE=40°,
∴∠BAC-∠DAC=∠DAE-∠DAC,
即∠BAD=∠CAE,
在△BAD和△CAE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$
∴△BAD≌△CAE,
∴BD=CE.

(2)解:∵△ACB和△DCE均为等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∠CDE=∠CED=60°,
∴∠ACB-∠DCB=∠DCE-∠DCB,
即∠ACD=∠BCE,
在△ACD和△BCE中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$
∴△ACD≌△BCE,
∴BE=AD,∠ADC=∠BEC,
∵点A,D,E在同一直线上,
∴∠ADC=180-60=120°,
∴∠BEC=120°,
∴∠AEB=∠BEC-∠CED=120-60=60°,
综上,可得
∠AEB的度数为60°;线段BE与AD之间的数量关系是:BE=AD.

(3)解:∵△ACB和△DCE均为等腰直角三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=90°,∠CDE=∠CED=45°,
∴∠ACB-∠DCB=∠DCE-∠DCB,
即∠ACD=∠BCE,
在△ACD和△BCE中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$,
∴△ACD≌△BCE,
∴BE=AD,∠BEC=∠ADC,
∵点A,D,E在同一直线上,
∴∠ADC=180-45=135°,
∴∠BEC=135°,
∴∠AEB=∠BEC-∠CED=135-45=90°;
∵∠DCE=90°,CD=CE,CM⊥DE,
∴CM=DM=EM,
∴DE=DM+EM=2CM,
∴AE=AD+DE=BE+2CM.
故答案为:60°、BE=AD.

点评 (1)此题主要考查了全等三角形的判定方法和性质,要熟练掌握,解答此题的关键是要明确:在判定三角形全等时,关键是选择恰当的判定条件.
(2)此题还考查了等腰直角三角形的性质和应用,要熟练掌握,解答此题的关键是要明确:等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.下列图形既是中心对称又是轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下列说法正确的是(  )
A.|-2|=-2B.0的倒数是0C.4的平方根是2D.-3的相反数是3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.在边长为1的小正方形网格中,△AOB的顶点均在格点上,
(1)B点关于y轴的对称点坐标为(-3,2);
(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1
(3)将△AOB以O为旋转中心顺时针旋转90°得到△A2OB2,求旋转过程中OA所扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系中,△ABC三个顶点分别为A(-1,4)、B(-3,1)、C(-3,4),△A1B1C1是由△ABC绕某一点顺时针旋转得到的.
(1)请直接写出旋转中心的坐标(0,0),旋转角是90度;
(2)将△ABC平移得到△A2B2C2,点A2的坐标为(0,-1),请画出平移后的△A2B2C2,并直接写出平移距离$\sqrt{26}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,等腰△ABC的周长为27cm,底边BC=7cm,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为17cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,是某卖场国产大米牌手机的宣传广告.

(1)你认为大米手机5月份的销售量必定是三个品牌手机中最高的吗?通过计算说明你的理由.
(2)若各品牌手机2015年4月的销售量如下:
手机品牌芒果手机四星手机大米手机
销售量(台)20080120
求该卖场5月份三个品牌手机销售量的平均增长率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,小明同学用自制的直角三角形纸板EFG测量树的高度AB,他调整自己的位置,设法使斜边EG保持水平,并且边EF所在的直线经过点A.已知纸板的两条直角边EF=60cm,FG=30cm,测得小刚与树的水平距离BD=8m,边EG离地面的高度DE=1.6m,则树的高度AB等于(  )
A.5mB.5.5mC.5.6mD.5.8m

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.以下问题,不适合用普查方法的是(  )
A.了解某种酸奶中钙的含量B.了解某班学生的课外作业时间
C.公司招聘职员,对应聘人员的面试D.旅客上飞机前的安检

查看答案和解析>>

同步练习册答案