2£®ÒÑÖªÏ߶Îa£¨Èçͼ£©£¬°´ÏÂÁв½Ö軭ͼ£®
£¨1£©ÓÃÖ±³ßÈÎÒâ×÷Ò»ÌõÖ±Ïßl£¬ÔÚÖ±ÏßlÉÏÈÎÈ¡Ò»µãO£¬ÀûÓÃÔ²¹æÔÚlÉÏ×÷³öµ½µãO¾àÀëΪaµÄµã£¬ÕâÑùµÄµãÄãÄÜ×÷³ö¼¸¸ö£¿
£¨2£©ÓÃÖ±³ßÈÎÒâ×÷Á½ÌõÏֱཻÏßl1£¬l2£¬¼ÇËüÃǵĽ»µãΪO£¬ÓÃÔ²¹æ·Ö±ðÔÚl1ºÍl2ÉÏ×÷³öµ½µãO¾àÀëµÈÓÚaµÄµã£¬ÕâÑùµÄµãÄãÄÜ×÷³ö¼¸¸ö£¿Èç¹û˳´ÎÓÃÏ߶ΰÑËüÃÇÁ¬½ÓÆðÀ´£¬ÄãÄܵõ½Ò»¸öÔõÑùµÄͼÐΣ¿
£¨3£©ÔÚƽÃæÄÚÈÎÈ¡Ò»µãO£¬ÓÃÔ²¹æ×÷³öµ½µãOµÄ¾àÀëΪaµÄËùÓеĵ㣬ËüÃÇ×é³ÉÒ»¸öʲôͼÐΣ¿

·ÖÎö £¨1£©ÏÈ×÷³öÖ±Ïßl£¬ÔÚÖ±ÏßlÉÏÈÎÈ¡Ò»µãO£¬ÀûÓÃÔ²¹æÔÚlÉÏ×÷Ô²¼´¿ÉÇó½â£»
£¨2£©Ïȸù¾ÝÌâÒâ×÷³öͼÐΣ¬ÔÙ¸ù¾Ý¾ØÐεÄÅж¨Çó½â¼´¿É£»
£¨3£©ÒÔOΪԲÐÄ£¬Ï߶ÎaµÄ³¤Îª°ë¾¶×÷³öÔ²¼´ÎªËùÇó£®

½â´ð ½â£º£¨1£©ÈçͼËùʾ£¬ÕâÑùµÄµãÄãÄÜ×÷³ö2¸ö£»

ÏÈ×÷³öÖ±Ïßl£¬ÔÚÖ±ÏßlÉÏÈÎÈ¡Ò»µãO£¬ÀûÓÃÔ²¹æÔÚlÉÏ×÷Ô²»¡¼´¿ÉÇó½â£»
£¨2£©ÈçͼËùʾ£¬ÕâÑùµÄµãÄÜ×÷³ö4¸ö£¬Èç¹û˳´ÎÓÃÏ߶ΰÑËüÃÇÁ¬½ÓÆðÀ´£¬Äܵõ½¾ØÐΣ»

£¨3£©ÈçͼËùʾ£¬ÓÃÔ²¹æ×÷³öµ½µãOµÄ¾àÀëΪaµÄËùÓеĵ㣬ËüÃÇ×é³ÉÒ»¸öÔ²£®

µãÆÀ ¿¼²éÁË×÷ͼ-¸´ÔÓ×÷ͼ£¬½â¾ö´ËÀàÌâÄ¿µÄ¹Ø¼üÊÇÊìϤ»ù±¾¼¸ºÎͼÐεÄÐÔÖÊ£¬½áºÏ¼¸ºÎͼÐεĻù±¾ÐÔÖʰѸ´ÔÓ×÷ͼ²ð½â³É»ù±¾×÷ͼ£¬Öð²½²Ù×÷£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬¶þ´Îº¯Êýy=ax2+bx-3µÄͼÏóÓëxÖá½»ÓÚA£¨-1£¬0£©£¬B£¨3£¬0£©Á½µã£¬ÓëyÖá½»ÓÚµãC£®¸ÃÅ×ÎïÏߵĶ¥µãΪM£®
£¨1£©Çó¸ÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Åжϡ÷BCMµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£®
£¨3£©Ì½¾¿×ø±êÖáÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃÒÔµãP£¬A£¬CΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷BCMÏàËÆ£¿Èô´æÔÚ£¬ÇëÇó³öµãPµÄ×ø±ê£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èçͼ£¬ABÊÇ¡ÑOµÄÏÒ£¬°ë¾¶OC¡ÍABÓÚµãD£¬Èô¡ÑOµÄ°ë¾¶Îª5£¬AB=8£¬ÔòCDµÄ³¤ÊÇ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®¼ÆË㣺£¨$\frac{1}{2}$£©-1-|-3+$\sqrt{3}$tan45¡ã|+£¨$\sqrt{2017}$£©0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖª¦ÁÓë¦Â»¥ÎªÓà½Ç£¬ÇÒcos£¨115¡ã-¦Á+¦Â£©=$\frac{\sqrt{2}}{2}$£¬Ôò¦Á=80¡ã£¬¦Â=10¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÔÚµçÏ߸˵Ķ¥²¿AºÍµØÃæB¡¢CÁ½µã´¦ÒýÁ½Ìõ¸ÖË¿ÏßAB£¬AC£¬ÒÑÖªµçÏ߸ËADµÄ³¤Îª12m£¬BDµÄ³¤Îª9m£¬DCµÄ³¤Îª16m£¬Çó¸ÖË¿ÏßµÄ×ܳ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÈçͼ£¬ÔÚËıßÐÎABCDÖУ¬AD¡ÎBC£¬BC£¾AD£¬BDƽ·Ö¡ÏABC£¬E¡¢F·Ö±ðÊÇBD¡¢ACµÄÖе㣮ÇóÖ¤£º
£¨1£©AE¡ÍBD
£¨2£©EF=$\frac{1}{2}£¨BC-AD£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÏÂÁÐÔËËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\sqrt{16}$=¡À4B£®3-2=-$\frac{1}{9}$C£®£¨$\sqrt{3}-\sqrt{2}$£©2=1D£®£¨$\sqrt{2}$-1£©0=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖª£ºÔÚ¡÷ABCÖУ¬ADÊÇBC±ßÉϵÄÖÐÏߣ¬µãEÊÇADµÄÖе㣻¹ýµãA×÷AF¡ÎBC£¬½»BEµÄÑÓ³¤ÏßÓÚF£¬Á¬½ÓCF£®
£¨1£©ÇóÖ¤£ºËıßÐÎADCFÊÇƽÐÐËıßÐΣ»
£¨2£©Ìî¿Õ£º
¢Ùµ±AB=ACʱ£¬ËıßÐÎADCFÊǾØÐΣ»
¢Úµ±¡ÏBAC=90¡ãʱ£¬ËıßÐÎADCFÊÇÁâÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸