精英家教网 > 初中数学 > 题目详情
已知:如图,四边形ABCD是正方形,E、F是AD延长线上的点,且DE=DC,DF=BD,求证:DH=GH.
证明:∵正方形ABCD中,AFBC,
∴∠2=∠F,
∵BD=DF,
∴∠1=∠F,
∴∠1=∠2,
∵∠CBD=∠4=45°,
∴∠1=∠2=
45°
2
=22.5°,
∴∠7=∠1+∠4=67.5°,
∵DE=DC且∠CDE=90°,
∴∠3=45°,
∴∠3=∠4,
∴BDCE,
∴∠5=∠1,
∴∠5=∠2,
∴BC=CH,
∵BC=CD,
∴CH=CD,
∴∠6=
180°-∠3
2
=67.5°

∴∠6=∠7,
∴DH=GH.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

请在6×6的正方形网格中,各画出一个不同类型的特殊平行四边形,并分别求出所画特殊平行四边形的面积.
(1)图1:AB为特殊平行四边形的一条边;
(2)图2:AB为特殊平行四边形的一条对角线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,菱形ABCD中,对角线AC,BD相交于点O,若再补充一个条件能使菱形ABCD成为正方形,则这个条件是______.(只填一个条件即可,答案不唯一)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,有两个边长为4cm的正方形,其中一个正方形的顶点在另一个正方形的中心上,那么图中阴影部分的面积是(  )
A.4cm2B.8cm2C.16cm2D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,点F在CD边上,射线AF交BD于点E,交BC的延长线于点G.
(1)求证:△ADE≌△CDE;
(2)过点C作CH⊥CE,交FG于点H,求证:FH=GH;
(3)设AD=1,DF=x,试问是否存在x的值,使△ECG为等腰三角形?若存在,请求出x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

将正方形ABCD(如图1)分割成四块,再拼成的矩形BDFH(如图2).

(1)这两个图形的面积显然不等,请你计算矩形BDFH与正方形ABCD的面积的差;
(2)为什么这两个图形的面积不等呢?通过观察发现,所拼成的矩形BDFH中,沿对角线方向有一条细小的缝隙.请你用学过的数学知识解释这条缝隙产生的原因.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

E是正方形ABCD内一点,且△EAB是等边三角形,则∠ADE的度数是(  )
A.70°B.72.5°C.75°D.77.5°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形的面积为36cm2,M是对角线AC上一点,且ME⊥AB于E,MF⊥BC于F,则ME+MF=______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于(  )
A.75°B.60°C.45°D.30°

查看答案和解析>>

同步练习册答案