精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2+2x+c的图象与x轴交于点A(3,0)和点C,与y轴交于点B(0,3).

(1)求抛物线的解析式;
(2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标;
(3)在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.
(1)(2)(1,2)(3)存在,( ,
解:(1)∵抛物线y=ax2+2x+c的图象经过点A(3,0)和点B(0,3),
,解得
∴抛物线的解析式为:
(2)∵,∴对称轴为x=1。
,解得x1=3,x2=-1,∴C(-1,0)。
如图1所示,连接AB,与对称轴x=1的交点即为所求之D点,

由于A、C两点关于对称轴对称,则此时DB+DC=DB+DA=AB最小。
设直线AB的解析式为y=kx+b,
由A(3,0)、B(0,3)可得:
,解得
∴直线AB解析式为y=-x+3。
当x=1时,y=2,∴D点坐标为(1,2)。
(3)结论:存在。
如图2,设P(x,y)是第一象限的抛物线上一点,
过点P作PN⊥x轴于点N,

则ON=x,PN=y,AN=OA-ON=3-x.


∵P(x,y)在抛物线上,∴,代入上式得:

∴当x= 时,SABP取得最大值。
当x=  时,,∴P( )。
∴在第一象限的抛物线上,存在一点P,使得△ABP的面积最大,P点的坐标为( ,)。
(1)利用待定系数法求出抛物线的解析式。
(2)连接AB,与对称轴x=1的交点即为所求之D点.为求D点坐标,求出直线AB的解析式,然后令x=1求得y,即可求出D点坐标。
(3)求出△ABP的面积表达式.这个表达式是一个关于P点横坐标的二次函数,利用二次函数求极值的方法可以确定P点的坐标。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=6.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BO-OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)求直线AB的解析式;
(2)在点P从O向A运动的过程中(不包括A、O),求△APQ的面积S与t之间的函数关系式,并直接写出t的取值范围;
(3)在点E从B向O运动的过程中,完成下面问题:
四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数()的图象如图所示,有下列结论:①;②;③;④.其中,正确结论的个数是
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,隧道的横截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线的解析式为
(1)一辆货运车车高4m,宽2m,它能通过该隧道吗?
(2)如果该隧道内设双行道,中间遇车间隙为0.4m,那么这辆卡车是否可以通过?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒).
(1)点A的坐标是:_________,点C的坐标是:__________;
(2)设△OMN的面积为S,求S与t的函数关系式;
(3)探求(2)中得到的函数S有没有最大值?若有,求出最大值;若没有,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

把抛物线的图像向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为,则b的值为【   】
A.2B.4C.6D.8

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

下表是二次函数y = ax2+bx+c(a≠ 0)的变量x、y 的部分对应值:

则方程ax2+bx+c = 0的解是   .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

烟花厂为扬州烟花三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度与飞行时间的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象如图所示,若,,则
A.B.
C.D.

查看答案和解析>>

同步练习册答案