精英家教网 > 初中数学 > 题目详情

【题目】如图,在等腰RtABC中,∠ACB90°,ACBCD是线段BC上一动点(不与点BC重合),连接AD,延长BC至点E,使得CECD,过点EEFAD于点F,再延长EFAB于点M

1)若DBC的中点,AB4,求AD的长;

2)求证:BMCD

【答案】1;(2)详见解析.

【解析】

1)根据等腰直角三角形的性质得到ACBC2,根据勾股定理即可得到结论;

2)过MMHBCH,连接AE,根据线段垂直平分线的性质得到AEAD,求得∠EAC=∠DAC,根据余角的性质得到∠AME=∠EAM,根据全等三角形的性质得到CDMH,于是得到结论.

1)∵在等腰RtABC中,∠ACB90°,ACBCAB4

ACBC2

DBC的中点,

CDBC

2)过MMHBCH,连接AE

ACBECDCE

AEAD

∴∠EAC=∠DAC

EFAD

∴∠EFD=∠ACD90°,

∴∠CAD+ADC=∠ADC+DEF

∴∠CAD=∠DEF

∴∠EAC=∠DEF

∴∠EAC=∠DEF

∵∠AME=∠B+BEM,∠EAM=∠BAC+EAC,∠CAB=∠B45°,

∴∠AME=∠EAM

AEEM

ADEM

∵∠ACD=∠EHM90°,

∴△ACD≌△EHMAAS),

CDMH

BMMHCD

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+2x+m.

(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;

(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.

(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在锐角三角形ABC中,BC=6,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在O的内接四边形ABCD中,AB=ADC=120°,点E上.

1)求∠E的度数;

2)连接ODOE,当∠DOE=90°时,AE恰好为⊙O的内接正n边形的一边,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+3与x轴相交于点A(﹣1,0)、B(3,0),与y轴相交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF.

(1)求抛物线的解析式;

(2)当四边形ODEF是平行四边形时,求点P的坐标;

(3)过点A的直线将(2)中的平行四边形ODEF分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线过点A(4,0),B(﹣2,0),C(0,﹣4).

(1)求抛物线的解析式;

(2)如图,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠A=45°,AB=,AC=6,点D,E为边AC上的点,AD=1,CE=2,点F为线段DE上一点(不与D,E重合),分别以点D、E为圆心,DF、EF为半径作圆.若两圆与边AB,BC共有三个交点时,线段DF长度的取值范围是_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是垂直于水平面的一棵树,小马(身高1.70米)从点出发,先沿水平方向向左走10米到点,再经过一段坡度,坡长为5米的斜坡到达点,然后再沿水平方向向左行走5米到达点(在同一平面内),小马在线段的黄金分割点处()测得大树的顶端的仰角为37°,则大树的高度约为( )米.(参考数据:

A. 7.8米 B. 8.0米 C. 8.1米 D. 8.3米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB于点M,MN⊥CM交射线AD于点N.

(1)当F为BE中点时,求证:AM=CE;

(2)若,求的值.

查看答案和解析>>

同步练习册答案