精英家教网 > 初中数学 > 题目详情
18.当x=1 时,代数式$\frac{x+5}{3}$的值是2.

分析 根据题意,列出方程$\frac{x+5}{3}$=2,求得x的值即可.

解答 解:∵代数式$\frac{x+5}{3}$的值是2,
∴$\frac{x+5}{3}$=2,
∴x+5=6,
∴x=1.
故答案为:1

点评 本题主要考查了解一元一次方程,解一元一次方程时,先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.积极行动起来,共建节约型社会!我市某居民小区400户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整理如表:
节水量(单位:吨)0.511.52
家庭数(户)2341
估计该小区400户家庭这个月节约用水的总量是(  )
A.360吨B.400吨C.480吨D.720吨

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在△ABC中,∠ACB为直角,AB=10,∠A=30°,半径为1的动圆Q的圆心从点C出发,沿着CB方向以1个单位长度/秒的速度匀速运动,同时动点P从点B出发,沿着BA方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PB长为半径的⊙P与AB、BC的另一个交点分别为E、D,连结ED、EQ.
(1)判断并证明ED与BC的位置关系,并求当点Q与点D重合时t的值;
(2)当⊙P和AC相交时,设CQ为x,⊙P被AC截得的弦长为y,求y关于x的函数;并求当⊙Q过点B时⊙P被AC截得的弦长;
(3)若⊙P与⊙Q相交,写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.甲、乙两地相距560km,A车从甲地开往乙地,每小时行80km;B车从乙地开往甲地,每小时行60km.若两车同时出发,多长时间后相距140km?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.若a=-(-2)2,b=-(-3)3,c=-(-4)2,则-[a-(b-c)]的值为(  )
A.-39B.7C.15D.47

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.在实数范围内下列判断正确的是(  )
A.若|m|=|n|,则m=nB.若a2>b2,则a>bC.若$\root{3}{a}=\root{3}{b}$,则a=bD.若$\sqrt{a^2}={(\sqrt{b})^2}$,则a=b

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在△ABC中,AB=AC,点O为BC中点,⊙O与AC相切于点D,连接DO并延长,与AB的延长线相交于点E.
(1)判断⊙O与AB的位置关系,并证明;
(2)若BE=$\frac{5}{3}$,AC=5,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,抛物线y=-x2+ax+b经过点A(1,0),B(5,0),与y轴交于点C,直线DF与x轴垂直,与抛物线交于点D,其横坐标为2,点E与点D关于抛物线的对称轴对称.
(1)求抛物线的解析式和点E的坐标;
(2)连接CD,BD,BC,请求出△BDC的面积;
(3)点M是直线DF上的动点,点N是x轴上的动点,当以点M、N、E为顶点的三角形是等腰直角三角形时,请直接写出点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.若点M(x,y)的坐标满足x2-y2=0,则点M的位置是(  )
A.在第二、四象限坐标轴夹角的平分线
B.在坐标轴夹角的平分线上
C.在第一、三象限坐标轴夹角的平分线上
D.在坐标轴上

查看答案和解析>>

同步练习册答案