精英家教网 > 初中数学 > 题目详情

【题目】设边长为3的正方形的对角线长为a.下列关于a的四种说法: ①a是无理数;
②a可以用数轴上的一个点来表示;
③3<a<4;
④a是18的算术平方根.
其中,所有正确说法的序号是(
A.①④
B.②③
C.①②④
D.①③④

【答案】C
【解析】解:∵边长为3的正方形的对角线长为a, ∴a= = =3
①a=3 是无理数,说法正确;
②a可以用数轴上的一个点来表示,说法正确;
③∵16<18<25,4< <5,即4<a<5,说法错误;
④a是18的算术平方根,说法正确.
所以说法正确的有①②④.
故选C.
先利用勾股定理求出a=3 ,再根据无理数的定义判断①;根据实数与数轴的关系判断②;利用估算无理数大小的方法判断③;利用算术平方根的定义判断④.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒 个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).

(1)当t=3秒时,直接写出点N的坐标;
(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;
(3)当t为何值时,△MNA是一个等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是(
A.x1=1,x2=﹣1
B.x1=1,x2=2
C.x1=1,x2=0
D.x1=1,x2=3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE. 求证:四边形BCDE是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.
(1)求证:∠ADB=∠CDB;
(2)若∠ADC=90°,求证:四边形MPND是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为(
A.1
B.
C.4﹣2
D.3 ﹣4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.

(1)求证:四边形OCED是菱形;
(2)连接AE,若AB=6cm,BC= cm.
①求sin∠EAD的值;
②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一张正方形纸板的边长为2cm,将它剪去4个全等的直角三角形(图中阴影部分).设AE=BF=CG=DH=xcm,四边形EFGH的面积为ycm2

(1)求y关于x的函数表达式和自变量x的取值范围;
(2)求四边形EFGH的面积为3cm2时的x值;
(3)四边形EFGH的面积可以为1.5cm2吗?请说明理由.

查看答案和解析>>

同步练习册答案