精英家教网 > 初中数学 > 题目详情

如图,等腰直角三角形ABC的斜边BC的长为8,平行于BC边的直线分别交AB,AC于M,N,将△AMN沿直线MN翻折,得到△A′MN,设△A′MN与△ABC的公共部分的面积为y,MN的长为x.
(1)如果A′在△ABC的内部,求出以x为自变量的函数y的解析式,并指出自变量x的取值范围;
(2)是否存在直线MN,使y的值为△ABC面积的数学公式?如果存在,则求出求出对应的x值;如果不存在,则说明理由.

解:(1)连接AA′,交MN于D,则:由对称性知AA′⊥BC,AD=A′D
又∵MN∥BC
∴AB=AC
∴AA′⊥BC(设与BC交于D′或延长线交于D′)
又∵MN∥BC
∴∠AMD=45°
∴AD=MD=MN=x
∴y=x2
又∵要使A′在△ABC内部
∴AA′<AD′=BC=4
∴AD<AA′=2
故:MN=x<2AD=4
于是:y=x2(x<4);

(2)要使y的值为△ABC面积的,则点A′一定在三角形的外部.
又y=x2-×(x-4)×(2x-8)=-x2+8x-16.
∴-x2+8x-16=××8×4
解得x1=x2=
∴存在直线MN使y的值为△ABC面积的
分析:(1)根据等腰直角三角形斜边上的高也是斜边上的中线,则等于斜边的一半.再根据三角形的面积公式进行计算,要求自变量的取值范围,根据A′在△ABC的内部和轴对称的性质则x的值应小于斜边的一半;
(2)如果是(1)中的情况,根据相似三角形的面积比是相似比的平方,则y的值一定小于△ABC面积的.所以应考虑点A′在三角形的外部的情况.表示出y的解析式,再列方程求解即可.
点评:此题主要是运用了等腰三角形的性质以及三角形的面积公式,能够根据不同的情况得到不同的函数关系式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,等腰直角三角形ABC绕C点按顺时针旋转到△A1B1C1的位置(A、C、B1在同一直线上),∠B=90°,如果AB=1,那么AC运动到A1C1所经过的图形的面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等腰直角三角形ABC的腰长与正方形DEFG的边长相符,且边AC与DE在同一直线l上,△ABC从如图所示的起始位置(A、E重合),沿直线l水平向右平移,直至C、D重合为止.设△ABC与正方形DEFG重叠部分的面积为y,平移的距离为x,则y与x之间的函数关系大致是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.
(1)求证:△ADC≌△AEB;
(2)判断△EGM是什么三角形,并证明你的结论;
(3)判断线段BG、AF与FG的数量关系并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰直角三角形△ABC中,∠ACB=90°,点D是BC的中点,CE⊥AD于点F交AB于点E,CH是AB上的高交AD于点G.
(1)找出图中的全等三角形;
(2)找出与∠ADC相等的角,并请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰直角三角形AEF的顶点E在等腰直角三角形ABC的边BC上.AB的延长线交EF于D点,其中∠AEF=∠ABC=90°.
(1)求证:
AD
AE
=
2
AE
AC

(2)若E为BC的中点,求
DB
DA
的值.

查看答案和解析>>

同步练习册答案