【题目】如图,在直角坐标系中,矩形的顶点
与原点重合,
、
分别在坐标轴上,
,
,直线
交
,
分别于点
,
,反比例函数
的图象经过点
,
.
(1)求反比例函数的解析式;
(2)直接写出当时,
的取值范围;
(3)若点在
轴上,且
的面积与四边形
的面积相等,求点
的坐标.
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,半径OC⊥AB,OB=4,D是OB的中点,点E是弧BC上的动点,连接AE, DE.
(1)当点E是弧BC的中点时,求△ADE的面积;
(2)若tan∠AED=,求AE的长;
(3)点F是半径OC上一动点,设点E到直线OC的距离为m,
①当△DEF是等腰直角三角形时,求m的值;
②延长DF交半圆弧于点G,若弧AG=弧EG,AG∥DE,直接写出DE的长 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,四边形
为正方形,点
的坐标为
,动点
沿边
从
向
以每秒
的速度运动,同时动点
沿边
从
向
以同样的速度运动,连接
、
交于点
.
(1)试探索线段、
的关系,写出你的结论并说明理由;
(2)连接、
,分别取
、
、
、
的中点
、
、
、
,则四边形
是什么特殊平行四边形?请在图①中补全图形,并说明理由.
(3)如图②当点运动到
中点时,点
是直线
上任意一点,点
是平面内任意一点,是否存在点
使以
、
、
、
为顶点的四边形是菱形?若存在,请直接写出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,二次函数y=ax2+2nx+c的图象过坐标原点.
(1)若a=-1.
①当函数自变量的取值范围是-1≤x≤2,且n≥2时,该函数的最大值是8,求n的值;
②当函数自变量的取值范围是时,设函数图象在变化过程中最高点的纵坐标为m,求m与n的函数关系式,并写出n的取值范围;
(2)若二次函数的图象还过点A(-2,0),横、纵坐标都是整数的点叫做整点.已知点,二次函数图象与直线AB围城的区域(不含边界)为T,若区域T内恰有两个整点,直接写出a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们可以用表示
为自变量的函数,如一次函数
,可表示
,
,
.
(1)已知二次函数;
①求证:不论为何值,此函数图像与
轴总有两个交点;
②若,是否存在实数
,使得当
时,函数
的最小值为
,若存在,求出
的值,若不存在,请说明理由;
(2)已知函数,
,若实数
、
使得
,求
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,⊙O是△ABC的内切圆,切点分别是D、E、F.
(1)连接OA、OB,则∠AOB= .
(2)若BD=6,AD=4,求⊙O的半径r.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,已知抛物线(a<0)与x轴交于A、B两点(点A在点B左侧),与y轴负半轴交于点C,顶点为D,已知
:S四边形ACBD=1:4.
(1)求点D的坐标(用仅含c的代数式表示);
(2)若tan∠ACB=,求抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰三角形△ABC中,∠BAC=120°,AB=3.
(1)求BC的长.
(2)如图,点D在CA的延长线上,DE⊥AB于E,DF⊥BC于F,连EF.求EF的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线与
轴交于点
、
两点,与
轴交于点
.
(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点,使得
的周长最小?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com