精英家教网 > 初中数学 > 题目详情

【题目】如图所示,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在点C的位置,则图中的一个等腰直角三角形是( )

A.△ADC′
B.△BDC′
C.△ADC
D.不存在

【答案】B
【解析】

由三角形中线的定义,可得BD=CD,又由折叠的性质,易求得∠BDC′=90°,BD=C′D,即可得△BDC′是等腰直角三角形.

∵AD是△ABC的中线,
∴BD=CD,
由折叠的性质可得:C′D=CD,∠ADC′=∠ADC=45°,
∴∠CDC′=90°,C′D=BD,
∴∠BDC′=180°-∠CDC′=90°,
∴△BDC′是等腰直角三角形.
故选:B.


【考点精析】利用三角形的“三线”和翻折变换(折叠问题)对题目进行判断即可得到答案,需要熟知1、三角形角平分线的三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心);2、三角形中线的三条中线线交于一点(交点在三角形内部,是三角形的几何中心,称为中心);3、三角形的高线是顶点到对边的距离;注意:三角形的中线和角平分线都在三角形内;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算: +( 2+| ﹣1|﹣2sin60°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°.

(1)当E为BC中点时,求证:△BCF≌△DEC;
(2)当BE=2EC时,求 的值;
(3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是 ,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.

(1)分别求直线l1与x轴,直线l2与AB的交点坐标;
(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;
(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.

(1)求证:△BCG≌△DCE;
(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠B,∠C的平分线交于点O,若∠BOC=132°,则∠A=度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,过点A(﹣ ,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根

(1)求线段BC的长度;
(2)试问:直线AC与直线AB是否垂直?请说明理由;
(3)若点D在直线AC上,且DB=DC,求点D的坐标;
(4)在(3)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,AD是角平分线,BE平分∠ABC交AD于点E,点O在AB上,以OB为半径的⊙O经过点E,交AB于点F
(1)求证:AD是⊙O的切线;
(2)若AC=4,∠C=30°,求 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为12的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G.则BG的长为(
A.5
B.4
C.3
D.2

查看答案和解析>>

同步练习册答案