精英家教网 > 初中数学 > 题目详情

【题目】如图,A,B分别是数轴上两点,点O为原点,点A表示的数为﹣60,点B表示的数为30.现有两个动点P、Q均从点A出发,沿数轴正方向移动,点P的速度为6单位/秒,点Q的速度为3单位/秒.

(1)若两动点同时出发,当点P到达点B时,点Q在数轴上表示的数为_____

(2)若点P出发2秒钟后点Q出发,当点P到达点B时,P、Q两点同时停止运动,设点P运动的时间为t秒,运动过程中点P表示的数为x,点Q表示的数为y,求t为何值时,|y|=2|x|.

(3)在(1)的条件下,若点P到达点B停留5秒后以5单位/秒的速度匀速沿数轴向点A运动,求在整个运动过程中当t为何值时,P,Q两点相距20个单位长度.

【答案】(1)-15;(2) t=6秒时,|y|=2|x|;(3) 在整个运动过程中当t秒时,P,Q两点相距20个单位长度

【解析】

(1)根据点A、B表示的数可得出线段AB的长度,利用时间=路程÷速度可求出当点P到达点B时点P、Q运动的时间,再由点Q的出发点、速度及运动时间可得出当点P到达点B时点Q在数轴上表示的数;
(2)找出当运动时间为t秒时x、y的值,结合|y|=2|x|即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;
(3)分析整个运动过程,由点P的运动速度不同可分三段考虑:当0≤t≤15时,找出点P、Q表示的数,由线段PQ=20可得出关于t的一元一次方程,解之即可得出t值;当15<t≤20时,找出点P、Q表示的数,由线段PQ=20可得出关于t的一元一次方程,解之即可得出t值;当t>20时,找出点P、Q表示的数,由线段PQ=20可得出关于t的一元一次方程,解之即可得出t值.综上即可得出结论.

解:(1)∵点A表示的数为﹣60,点B表示的数为30,

∴线段AB的长度为30﹣(﹣60)=90,

∴当点P到达点B时,点P、Q运动的时间为90÷6=15(秒),

∴当点P到达点B时,点Q在数轴上表示的数为﹣60+3×15=﹣15.

故答案为:﹣15.

(2)当点P运动的时间为t秒时,x=6t﹣60,y=3(t﹣2)﹣60=3t﹣66.

|y|=2|x|,即|3t﹣66|=2|6t﹣60|,

解得:t1=6,t2=

答:当t=6秒时,|y|=2|x|.

(3)90÷6=15(秒),15+5=20(秒),

∴分三种情况考虑:

①当0≤t≤15时,点P表示的数为6t﹣60,点Q表示的数为3t﹣60,

6t﹣60﹣(3t﹣60)=20,

解得:t=

②当15<x≤20时,点P表示的数为30,点Q表示的数为3t﹣60,

30﹣(3t﹣60)=20,

解得:t=(不合题意,舍去);

t>20时,点P表示的数为30﹣5(t﹣20),点Q表示的数为3t﹣60,

|30﹣5(t﹣20)﹣(3t﹣60)|=20,

解得:t1=,t2=

综上所述:在整个运动过程中当t秒时,P,Q两点相距20个单位长度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列条件,不能判定△ABC与△DEF相似的是(  )
A.∠C=∠F= ,∠A= ,∠D=
B.∠C=∠F= ,AB=10,BC=6,DE=15,EF=9
C.∠C=∠F=
D.∠B=∠E=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嘉淇同学要证明命题两组对边分别相等的四边形是平行四边形是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.

已知:如图1,在四边形ABCD中,BC=AD,AB=

求证:四边形ABCD 四边形.

(1)在方框中填空,以补全已知和求证;

(2)按嘉淇同学的思路写出证明过程;

(3)用文字叙述所证命题的逆命题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上三点AOB表示的数分别为60,-4,动点PA出发,以每秒6个单位的速度沿数轴向左匀速运动.

1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是

2)另一动点RB出发,以每秒4个单位的速度沿数轴向左匀速运动,若点PR同时出发,问点P运动多少时间追上点R

3)若MAP的中点,NPB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2﹣2x﹣3与x轴交于A,B两点,点A在点B的左侧.
(1)求A,B两点的坐标和此抛物线的对称轴;
(2)设此抛物线的顶点为C,点D与点C关于x轴对称,求四边形ACBD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)
阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD于点A,求间径就是要求⊙O的直径.
(1)再次阅读后,发现AB=寸,CD=寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件.
(2)帮助小智求出⊙O的直径

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:抛物线y=x2+(2m﹣1)x+m2﹣1经过坐标原点,且当x<0时,y随x的增大而减小.
(1)求抛物线的解析式;
(2)结合图象写出,0<x<4时,直接写出y的取值范围
(3)设点A是该抛物线上位于x轴下方的一个动点,过点A作x轴的平行线交抛物线于另一点D,再作AB⊥x轴于点B,DC⊥x轴于点C.当BC=1时,求出矩形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB是直角,OA平分∠COD,OE平分∠BOD,若∠BOE=23°,则∠BOC的度数是(  )

A. 113° B. 134° C. 136° D. 144°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为(
A.
B.2
C.2
D.3

查看答案和解析>>

同步练习册答案