精英家教网 > 初中数学 > 题目详情
某同学利用描点法画二次函数y=ax2+bx+c(a≠0)的图象时,列出的部分数据如下表:
x
0
1
2
3
4
y
3
0
-2
0
3
经检查,发现表格中恰好有一组数据计算错误,请你根据上述信息写出该二次函数的解析式(     )
A.y=      B. y=x2-4x+3    C.      D.
B

试题分析:根据图中表格的数据,选择三组数据0、3,1、0,3、0,;因为二次函数y=ax2+bx+c,所以解得,所以二次函数的解析式为y=x2-4x+3
点评:本题考查二次函数,解答本题需要掌握求二次函数的解析式,要求考生会用待定系数法求函数的解析式
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数的图象过点A(0,﹣3),B(),对称轴为直线,点P是抛物线上的一动点,过点P分别作PM⊥x轴于点M,PN⊥y轴于点N,在四边形PMON上分别截取PC=MP,MD=OM,OE=ON,NF=NP.

(1)求此二次函数的解析式;
(2)求证:以C、D、E、F为顶点的四边形CDEF是平行四边形;
(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若二次函数y=ax2+bx+c的x与y的部分对应值如下表:
x
-7
-6
-5
-4
-3
-2
y
-27
-13
-3
3
5
3
则当x=1时,y的值为   (  )  
A.5        B.-3          C.-13         D.-27

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某人乘雪橇沿如图所示的斜坡笔直滑下,滑下的路S(米)与时间t(秒)间的关系式为S=10t+t2,若滑到坡底的时间为2秒,则此人下滑的高度为(    )
A.24米B.12米C.12D.11米

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数为常数),当取不同的值时,其图象构成一个“抛物线系”.下图分别是当时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是__________________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

先阅读理解下面的例题,再按要求解答后面的问题
例题:解一元二次不等式>0.解:令y=,画出y=如图所示,

由图像可知:当x<1或x>2时,y>0.所以一元二次不等式>0的解集为x<1或x>2.
填空:(1)<0的解集为                              
(2)>0的解集为                              
用类似的方法解一元二次不等式>0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数的自变量x的取值范围是            

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数的图象如图所示,则下列结论:①;②;③当时,的最小值为,④中,正确的有             

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知菱形ABCD的边长为2,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.

(1)求这条抛物线的函数解析式;
(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<
①当t=1时,△ADF与△DEF是否相似?请说明理由;
②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)

查看答案和解析>>

同步练习册答案