精英家教网 > 初中数学 > 题目详情

已知,△ABC中,AC=BC,∠ACB=90°,D为AB的中点,若E在直线AC上任意一点,DF⊥DE,交直线BC于F点.G为EF的中点,延长CG交AB于点H.
(1)若E在边AC上.①试说明DE=DF;②试说明CG=GH;

(2)若AE=3,CH=5.求边AC的长.

解:(1)①连接CD,

∵∠ACB=90°,D为AB的中点,AC=BC,

∴CD=AD=BD,

又∵AC=BC,

∴CD⊥AB,

∴∠EDA+∠EDC=90°,∠DCF=∠DAE=45°,

∵DF⊥DE,

∴∠EDF=∠EDC+∠CDF=90°,

∴∠ADE=∠CDF,

在△ADE和△CDF中

∴△ADE≌△CDF,

∴DE=DF.

②连接DG,

∵∠ACB=90°,G为EF的中点,

∴CG=EG=FG,

∵∠EDF=90°,G为EF的中点,

∴DG=EG=FG,

∴CG=DG,

∴∠GCD=∠CDG

又∵CD⊥AB,

∴∠CDH=90°,

∴∠GHD+∠GCD=90°,∠HDG+∠GDC=90°,

∴∠GHD=∠HDG,

∴GH=GD,

∴CG=GH.

(2)如图,当E在线段AC上时,

∵CG=GH=EG=GF,

∴CH=EF=5,

∵△ADE≌△CDF,

∴AE=CF=3,

∴在Rt△ECF中,由勾股定理得:

∴AC=AE+EC=3+4=7;

如图,当E在线段CA延长线时,

AC=EC﹣AE=4﹣3=1,

综合上述AC=7或1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知Rt△ABC中,∠ACB=90°,BC=5,tan∠A=
3
4
,现将△ABC绕着点C逆时针旋转α(45°<α<135°)得到△DCE,设直线DE与直线AB相交于点P,连接CP.
精英家教网
(1)当CD⊥AB时(如图1),求证:PC平分∠EPA;
(2)当点P在边AB上时(如图2),求证:PE+PB=6;
(3)在△ABC旋转过程中,连接BE,当△BCE的面积为
25
4
3
时,求∠BPE的度数及PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知在△ABC中,AB=AC,∠BAD=β,且AD=AE,求∠EDC.(用β表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

8、如图,已知在△ABC中,AD垂直平分BC,AC=EC,点B、D、C、E在同一直线上,则下列结论:①AB=AC;②∠CAE=∠E;③AB+BD=DE;④∠BAC=∠ACB.正确的个数有(  )个.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在△ABC中,有一个角为60°,S△ABC=10
3
,周长为20,则三边长分别为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,点D、E分别是AB、AC上的点,以AE为直径的⊙O与过B点的⊙P精英家教网外切于点D,若AC和BC边的长是关于x的方程x2-(AB+4)x+4AB+8=0的两根,且25BC•sinA=9AB,
(1)求△ABC三边的长;
(2)求证:BC是⊙P的切线;
(3)若⊙O的半径为3,求⊙P的半径.

查看答案和解析>>

同步练习册答案