【题目】 在正方形ABCD中.
(1)如图1,点E、F分别在BC、CD上,AE、BF相交于点O,∠AOB=90°,试判断AE与BF的数量关系,并说明理由;
(2)如图2,点E、F、G、H分别在边BC、CD、DA、AB上,EG、FH相交于点O,∠GOH=90°,且EG=7,求FH的长;
(3)如图3,点E、F分别在BC、CD上,AE、BF相交于点O,∠AOB=90°,若AB=5,图中阴影部分的面积与正方形的面积之比为4:5,求△ABO的周长.
【答案】(1)AE=BF,理由见解析;(2)FH=7;(3)△AOB的周长为5+
【解析】
(1)由四边形ABCD是正方形可得AB=BC,∠ABE=∠BCF=90°,根据余角的性质可得∠BAO=∠CBF,然后根据ASA可证△ABE≌△BCF,进而可得结论;
(2)如图4,作辅助线,构建平行四边形AMEG和平行四边形BNFH,得AM=GE,BN=FH,由(1)题的结论知△ABM≌△BCN,进而可得FH的长;
(3)根据正方形的面积和阴影部分的面积可得:空白部分的面积为25-20=5,易得△AOB的面积与四边形OECF的面积相等,设AO=a,BO=b,则易得ab=5,根据勾股定理得:a2+b2=52,然后根据完全平方公式即可求出a+b,进一步即得结果.
解:(1)AE=BF,理由是:如图1,∵四边形ABCD是正方形,
∴AB=BC,∠ABE=∠BCF=90°,
∵∠AOB=90°,∴∠BAO+∠ABO=90°,
又∵∠CBF+∠ABO=90°,∴∠BAO=∠CBF,
∴△ABE≌△BCF(ASA).
∴AE=BF;
(2)在图2中,过点A作AM∥GE交BC于M,过点B作BN∥FH交CD于N,AM与BN交于点O′,如图4,则四边形AMEG和四边形BNFH均为平行四边形,
∴AM=GE,BN=FH,
∵∠GOH=90°,AM∥GE,BN∥FH,∴∠AO′B=90°,
由(1)得,△ABM≌△BCN,∴AM=BN,
∴FH=GE=7;
(3)如图3,∵阴影部分的面积与正方形ABCD的面积之比为4:5,
∴阴影部分的面积为×25=20,∴空白部分的面积为25-20=5,
由(1)得,△ABE≌△BCF,
∴△AOB的面积与四边形OECF的面积相等,均为×5=,
设AO=a,BO=b,则ab=,即ab=5,
在Rt△AOB中,∠AOB=90°,∴a2+b2=52,
∴a2+2ab+b2=25+10=35,即,
∴a+b=,即AO+BO=,
∴△AOB的周长为5+.
科目:初中数学 来源: 题型:
【题目】如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠MON=ɑ(0°<ɑ<180°),点A.B分别在OM、ON上运动(不与点O重合).
(1)如图1,∠MON=90°,BC是∠ABN的平分线,BC的反方向延长线与∠BAO的平分线交与点D.
①若∠BAO=60°,则∠D=___.
②猜想:∠D的度数是否随A,B的移动发生变化?并说明理由。
(2)如图2,∠MON=α(0°<α<180°)”,∠ABC=∠ABN,∠BAD=∠BAO,其余条件不变,则∠D=___°(用含α、n的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.73,≈1.41.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+2x﹣3与x轴交于A、B两点,且B(1,0)
(1)求抛物线的解析式和点A的坐标;
(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;
(3)如图2,已知直线y=x﹣分别与x轴、y轴交于C、F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC中,点D、E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,CD=2,则DF的长为( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市举行“第十七届中小学生书法大赛”作品比赛,已知每幅参赛作品成绩记为,组委会从1000幅书法作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制成如下统计图表.
分数段 | 频数 | 百分比 |
38 | 0.38 | |
| 0.32 | |
|
| |
10 | 0.1 | |
合计 | 100 | 1 |
书法作品比赛成绩频数直方图
根据上述信息,解答下列问题:
(1)请你把表中空白处的数据填写完整.
(2)请补全书法作品比赛成绩频数直方图.
(3)若80分(含80分)以上的书法作品将被评为等级奖,试估计全市获得等级的幅数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB、CD相交于点O,∠BOC=80°,OE是∠BOC的角平分线,OF是OE的反向延长线.
(1)求∠2、∠3的度数;
(2)说明OF平分∠AOD的理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com